Heavy-flavour jet identification at the CMS experiment for Run 2

Mauro Verzetti on behalf of the CMS collaboration

Why flavour tagging?

Just look at the talks in this conference!

Why flavour tagging?

Just look at the talks in this conference!

Fundamental tool for:

- Higgs physics (H→bb, ttH)
- SUSY
- Heavy exotic resonances
- Top physics, SM

HF tagging @ CMS - <u>BTV-15-001</u>

HF tagging @ CMS – <u>BTV-15-001</u> – <u>J. Instrum. 8 P04013</u>

HF tagging @ CMS - <u>BTV-15-001</u> - <u>J. Instrum. 8 P04013</u>

e.g.: Jet Probability (JP)

HF tagging @ CMS - BTV-15-001 - J. Instrum. 8 P04013

- Adaptive Vertex Reconstruction (AVR): applied on tracks associated to the jet
- Inclusive Vertex Fitter (IVF): on the full set of tracks recorded in the event (SV ΔR-matched to jet).

Current reconstruction default

HF tagging @ CMS - <u>BTV-15-001</u>

c-tagger — <u>BTV-16-001</u>

Track info

SV info

SL info

All the input features directly fed into the discriminator training.

Minimal information loss

c-tagger - <u>BTV-16-001</u>

c-tagger - <u>BTV-16-001</u>

Use TWO BDTs - <u>BTV-16-001</u>

Use TWO BDTs — <u>BTV-16-001</u>

Boosted tagging @ CMS - BTV-13-001

FatJet: CSVv2 w/o retraining. Custom (relaxed) track and SV association directly on anti- k_T 0.8

Boosted tagging @ CMS - BTV-13-001

FatJet: CSVv2 w/o retraining. Custom (relaxed) track and SV association directly on anti- k_T 0.8

Sub-jet: CSVv2 w/o retraining applied to sub-jets (soft drop, pruned, etc...)

Boosted tagging @ CMS - BTV-15-002

FatJet: CSVv2 w/o retraining. Custom (relaxed) track and SV association directly on anti- k_T 0.8

Sub-jet: CSVv2 w/o retraining applied to sub-jets (soft drop, pruned, etc...). Used for boosted top

Double b: dedicated training targeting boosted resonances X→bb

Boosted tagging @ CMS - BTV-15-002

Why to measure performance on data?

Simulation is not perfect!

Why to measure performance on data?

Simulation is not perfect!

We need to correct simulation by introducing scale factors

$$SF_f = \frac{\varepsilon_{DATA}}{\varepsilon_{MC}}$$

performance on data — <u>CMS-DP-2016-018</u>

Extensive performance programme based on QCD multijet and tt events.

performance on data — <u>CMS-DP-2016-018</u>

performance on data — <u>CMS-DP-2016-018</u>

A harder challenge: charm tagging performance — <u>BTV-16-001</u>

Data/Simulation SF W+c events require a μ in the jet. 1.4 Background removed by OS - SS High purity sample. Possible 0.8 $p_{T}(jet)$ binning 0.6 W s,d 2.6 fb⁻¹ (13 TeV, 25 ns) ¹⁰⁰⁰⁰ Events CMS W+charm Preliminary W+uds W+b DY+jets С

A harder challenge: charm tagging performance – <u>BTV-16-001</u>

- CMS has a wide range of heavy flavour taggers
- Calibration is performed on data with multiple, complementary methods
- New charm tagger tool
 - New methods to calibrate on c jets

Back up

LT Method

- Requires muon in the jet to increase purity
- Template fit of the lifetime tagger (JP discriminator) distribution before and after the tag

$$\varepsilon_b = \frac{C_b f_b^{tag} N_{data}^{tag}}{f_b^{before \ tag} N_{data}^{before \ tag}}$$

Boosted b tagging performances

- Efficiency measured with the LT method
- Mis-tag rate measured with the Negative tags method

M. Verzetti, U. Rochester

650

p_[GeV]

700

0.5^L

400

450

500

550

600

Discriminator reshaping

- Iterative method to extract $SF_{\rm b}$ and $SF_{\rm L}$

2.6 fb⁻¹ (13 TeV, 25 ns)

Data

udsg

10[°]

CMS

Preliminary

Jets/0.024

30

25

20

0.6

0.8

CSVv2 Discriminator

1

0.5

0

0.2

0.4

M. Verzetti, U. Rochester

Flavour Matching

Similar definition to particle-level bquarks in top physics:

- Generated B/C hadron w/ scaleddown momentum
- Add the hadrons to the stable particle collections
- Re-run jet clustering
- Jets containing the hadron are assigned the hadron flavour (priority to Bs over Cs)

Negative tags method ($I \rightarrow b$ mistag)

- Builds tagger using only information from tracks with positive/negative IP
- Assumption: IP for light jets is a resolution effect / due to fake tracks
- Measure SF with the negative tagger only
- Used for:
 - b-tagging
 - c-tagging
 - boosted tagging

$$\varepsilon_{\text{data}}^{\text{misid}} = \varepsilon_{\text{data}}^{-} \cdot R_{\text{light}}$$

$$R_{\rm light} = \frac{\varepsilon_{\rm MC}^{\rm misid}}{\varepsilon_{\rm MC}^{-}}$$

c tagging with tt events

- Histogram-based template fit.
- 1 parameter of interest: SF_c
- No SF_c binning: impossible with this statistics
- Systematic effects added and profiled in the fit
- 4 categories according to hadronic W jets that pass B/C-tagging WP

