

Muon storage for the muon g-2 experiment at Fermilab

Vladimir Tishchenko

Brookhaven National Laboratory

on behalf of the muon g-2 collaboration

ICHEP 2016

Outline

- Motivation of the experiment
- Principles of measurements
- Importance of the muon beam characteristics for physics measurements
- Collaboration efforts in simulating the muon beam for muon g-2 experiment
- Future plans

The Muon Anomalous Magnetic Moment

$$i(\partial_{\mu} - ieA_{\mu}(x))\gamma^{\mu}\psi(x) = m\psi(x)$$

$$\vec{\mu}_{\mu} = g_{\mu}\frac{e}{2m_{\mu}}\vec{S}$$

$$g_{\mu} = 2 \quad \text{for} \quad S = 1/2$$

Quantum loop effects:
$$\mu_{\mu} = (1+a_{\mu}) \frac{e\hbar}{2m_{\mu}}$$
 where

$$a_{\mu} \equiv rac{g_{\mu}-2}{2}$$
 - anomalous magnetic moment

Comparison of Experiment and Theory

- Theory uncertainty:
 - 0.42 ppm
- Experimental uncertainty:
- 0.54 ppm

E821 @ BNL

DHMZ 180.2±4.9

$$\Delta_{\mu}^{\text{PDG 2013}} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 288(63)(49) \times 10^{-11} \qquad (3.6\sigma)$$

- "interesting but not yet conclusive discrepancy"
- new physics signal?

$$a_{\mu}^{\rm SUSY} \simeq {\rm sign}(\mu) \cdot 130 \times 10^{-11} \left(\frac{100 \text{ GeV}}{m_{\rm SUSY}}\right) {\rm tan}(\beta)$$

A. Czarnecki and W.J. Marciano, PRD 64 (2001)

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F\left(\frac{m_V}{m_{\mu}}\right)$$

V. Tishchenko

arXiv:1311.2198 [hep-ph] HI MNT 182.8±5.0 **SMXX** 181.5+3.5 BNL-E821 04 ave. 208.9±6.3 New (g-2) exp. 208.9±1.6 Fermilab E989 goal: 0.14 ppm

a..-11 659 000 (10⁻¹⁰)

160

170

ICHEP-2016 4 August, 2016 230

220

Muon g-2 experiment in a nutshell

- 1) Take polarized muons (come naturally from pion decay)
- 2) Inject muons into a uniform magnetic field
 - Momentum precession (cyclotron frequency) $\omega_c = \frac{e}{m\gamma} B$
 - Spin precession $\omega_s=rac{e}{m\gamma}B(1+\gamma a_\mu)$ $\omega_a=\omega_s-\omega_c=rac{e}{m}a_\mu B$

BNL g-2 experiment in a nutshell

Time after injection [us]

$$a_{\mu} = \frac{m}{e} \, \frac{\omega_{\alpha}}{B}$$

Determining the anomalous magnetic moment requires

measuring

The spin precession frequency $\,\omega_a$

muon decay is self-analyzing: higher energy positrons are emitted preferentially in direction of muon spin

V. Tishchenko

The magnetic field B (ω_p)

wrapped around modulo 100 µs

17 NMR trolley probes

ICHFP-2016 4 August, 2016

Towards the new precision goal (x4)

$$0.54 \text{ ppm} \rightarrow 0.14 \text{ ppm}$$

- 1. improve statistical uncertainty
 - record ×20 more muon decays
- 2. improve systematic uncertainty
 - uncertainty in ω_p
 - uncertainty in ω_a

uncertainties in E821 and E989 goals

D. Kawall, UMass

Category	E821	Main E989 Improvement Plans	Goal
	[ppb]		[ppb]
Absolute field calibration	50	Special 1.45 T calibration magnet with thermal enclosure; ad-	35
Trolley probe calibrations	90	ditional probes; better electronics Plunging probes that can cross calibrate off-central probes; bet-	30
Troney probe camprations	90	ter position accuracy by physical stops and/or optical survey; more frequent calibrations	30
Trolley measurements of B_0	50	Reduced position uncertainty by factor of 2; improved rail irregularities; stabilized magnet field during measurements*	30
Fixed probe interpolation	70	Better temperature stability of the magnet; more frequent trolley runs	30
Muon distribution	30	Additional probes at larger radii; improved field uniformity; improved muon tracking	10
Time-dependent external magnetic fields	_	Direct measurement of external fields; simulations of impact; active feedback	5
Others †	100	Improved trolley power supply; trolley probes extended to larger radii; reduced temperature effects on trolley; measure kicker	30
		field transients	
Total systematic error on ω_p	170		70

^{*}Improvements in many of these categories will also follow from a more uniformly shimmed main magnetic field.

[†]Collective smaller effects in E821 from higher multipoles, trolley temperature uncertainty and its power supply voltage response, and eddy currents from the kicker.

Uncertainties in E821 and E989 goals

ω_a

Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	$\begin{bmatrix} 30 \end{bmatrix}$
Total	180	Quadrature sum	70

Requirements to the g-2 beam storage

- Maximize the acceptance of magic-momentum muons.
 - → statistical uncertainty
- Minimize beam-related systematic uncertainties
 - theory
 - simulations
 - measurements

Muon g-2 Collaboration (E989)

Domestic Universities

- Boston
- Cornell
- Illinois
- James Madison
- Massachusetts
- Mississippi
- Kentucky
- Michigan
- Michigan State
- Mississippi
- Northern Illinois
 University
- Northwestern
- Regis
- Virginia
- Washington
- York College
- National Labs
 - Argonne
 - Brookhaven
 - Fermilab
- Consultants
 - Muons, Inc.

Italy

- Frascati
- Roma
- Udine
- Naples
- Trieste

China

- Shanghai

The Netherlands:

Groningen

Germany:

- Dresden

Japan:

Osaka

Russia:

- Dubna
- PNPI
- Novosibirsk

University College

London

Liverpool

Oxford

Rutherford Lab

Lancaster

KAIST

Co-spokespersons: David Hertzog, Lee Roberts Project Manager: Chris Polly

Electric quads to contain the beam vertically

12

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]$$

$$= 0 \text{ for } \gamma = 29.3 \quad (p_{\mu} = 3.09 \text{ GeV/c})$$

E-field contribution vanishes

Upgrade of Quadrupoles to higher HV

- Higher admittance of the (g-2) storage ring
- Lower CBO systematic error
- Lower muon loss systematic error

32-kV voltage test

BROOKHAVEN NATIONAL LABORATORY

New beam collimators

Baseline plan:

- Manufacture new collimators
- Elliptical profiles to match beta-functions of the g-2 storage ring
- Optimized thickness of collimators
- Replace $\frac{1}{2}$ -collimators (see picture above) with full-collimators
- The number of collimators will be reduced due to conflicts with new tracking chambers

Injection channel into the g-2 storage ring

Muons come to the end of the M5 line and then propage through

- Hole in magne yoke
- Dipole fringe field
- Inflector

And exit inflector 77 mm from the center of the dipole aperture.

The magnetic field is near zero at the inner surface of the yoke, and rises to 1.45 T between the magnet polses, over a distance of ~39 cm.

Injection aperture

17

4 August, 2016

New Kicker

D. Rubin, Cornell

Kickers steer injected muons onto the closed orbit of the storage ring

Requirements:

Kick angle ~ 10.8 to 12.1 mrad Kicker B-field ~ 218 to 245 Gauss Integrated B-field ~ 1.11 to 1.25 kG-m

Pulse width(τ_{wid}) 120ns < τ_{wid} < 149ns

Repetition rate ~100Hz peak, 12Hz average

$$\tau_{rev}$$
 = 149 ns

d = 77 mm, R=7112 mm kick angle θ = d/R = 10.8 mrad

New Kicker

D. Rubin, Cornell

19

Requirements:

• 3.5 kA

• 120ns width

Tapered transformer

Load resistor matches impedance of Blumlein center conductor to load

Charging voltage

Thyratron switch shorts middle conductor of triaxial line to outer conductor

E 821 plates

 $\frac{2L}{}$ width of pulse is proportional to length of blumlein

BROOKHAVEN beam, EDM

9 independent

tracking modules

New Tracker

B. Casey, FNAL

Calibration NMR probe

80 Fiber

Tracker

20

Purpose: measure the muon beam profile at multiple locations around the ring as a function of time throughout the muon fill. Is needed for understanding systematic uncertainties associated with with ω_a measurements

(calorimeter pileup, calorimeter gain, muon loss, differential decay syst. uncertainty, etc). Will also be used to search for a tilt in the muon precession plane away from the vertical orientation (which would be indicative of an EDM of the muon).

Trolley

Design: 5-mm-diameter 10-cm-long straw UV doublets at 7.5°.

straw walls: 6 µm Mylar

sense wires: 25 µm gold-plated tungsten at 1500 V

gas: 80:20 Argon: CO₂ readout: ASDQ chips

Beam simulations in g-2

- MARS
- G4beamline
- Geant
- BMAD
- E821 particle tracking code(s) (Y. Semertzidis)

End-to-end simulation effort

muons at the entrance to the g-2 storage ring: 2.4×10^{-7} POT $(\Delta p/p = \pm 0.5\%)$

Propagation through injection channel

Based on field maps of injection channel we have identified

- (ideal) trajectory that emerges
 tangent to central orbit of muon ring
- twiss parameters at end of M5 beamline that maximize acceptance through injection channel into ring.

Muon storage ring

$$p_0 = 3.094 \; GeV/c$$

$$B = 1.45 T$$

$$R_0 = \frac{3.3356p_0}{B} \approx 7.1 \ m$$

$$\omega_c = \frac{\beta c}{R_0} \approx 4.2 \times 10^7 \ Rad/s$$

$$f_c = \omega_c/2\pi \approx 6.7 \ MHz$$

$$\alpha = \frac{\Phi}{u^2 - x^2} \approx 1.3 \times 10^7 \ V/m^2$$

$$n = \frac{2\alpha q R_0}{vB} \approx 0.18$$

$$f_x = \frac{\omega_c}{2\pi} \sqrt{1 - n} \approx 6.1 \ MHz$$

$$f_y = \frac{\omega_c}{2\pi} \sqrt{n} \approx 2.8 \ MHz$$

$$f_{\rm CBO} = f_c - f_x = 634 \; kHz$$

$$\nu_x = \sqrt{1 - n} \approx 0.9$$

$$\nu_y = \sqrt{n} \approx 0.4$$

$$\nu_x^2 + \nu_y^2 = 1$$

24 ICHEP-2016 4 August, 2016

Summary and future plans

- To achive the new precision goal, the Muon g-2 collaboration is building new
 equipment for the muon storage ring (kickers, collimators, trackers) and
 upgradig the existing one (electrostatic focusing quadrupoles).
- We have developed a Geant, BMAD, MARS and G4beamline models for pion production in the target, pion capture by the beamline, pion decay, muon capture by the beamline, beam transport, beam injection into the g-2 storage ring, beam storage in the g-2 ring.
- The beam simulation software has been successfully used to
 - optimize the pion producton target
 - optimize the interface (beamline to storage ring) parameters
 - optimize the detector geometry
 - preliminary estimate of the systematic uncertainties in the experiment
- Future plans: study systematics effects in the experiment.