Performance studies of large resistive Micromegas quadruplets in Test-Beams and High Radiation Environments

B. Alvarez1, J. Bortfeldt1, A. Düdder2, E. Farina3, F. Kuger1,3, P. Iengo1, T.H. Lin2, O. Sidiropoulou1,3, M. Schott2, F. Sforza1, J. Wotschack1

1CERN, 2University of Mainz, Germany, 3University of Pavia, Italy, 4University of Würzburg, Germany
Index

Design
- Resistive Micromegas with mechanically floating mesh
- The first large Micromegas quadruplet prototype

Mechanical accuracy
- Alignment measurements

Basic Performance parameters
- Efficiency measurements
- Gain uniformity after assembly
- Spatial resolution
Design
Resistive Micromegas with mechanical floating mesh

- Readout strips are covered by a 50μm thick Kapton foil carrying resistive strips (0.5-1MΩ/□) to limit spark currents
- Signals are induced via capacitive coupling to the readout strips
- The mesh is fixed to the drift panel facilitating detector opening and cleaning
- When the detector is closed the mesh is attached to the pillars by electrostatic force

Results from a long R&D phase to develop Micromegas suitable for large experiments

M. Iodice (5/8/16): Resistive Micromegas for the Muon Spectrometer upgrade of the ATLAS
The first large Micromegas quadruplet prototype

- 3 drift panels
- 2 readout panels with identical micromegas structure on both sides (back-to-back)
- 4 gas gaps
- 2 HV sectors per layer
- 128 μm amplification gap
 - woven stainless steel mesh: 30 μm wires, 50 μm opening
- 5mm drift gap
- 1024 readout channels/layer
 - 315 μm wide strips, 415 μm strip pitch
- Resistive strips sputtered in the Kapton foil

Schematic illustration of strips inclination:

- Layer 1: tilt 0°
- Layer 2: tilt 0°
- Layer 3: tilt -1.5°
- Layer 4: tilt +1.5°

- precision (η) coordinate
- precision (η) and transverse (φ) coordinates
Mechanical Accuracy
Plane-to-plane alignment

- A good alignment of the strips is of prime importance.
- The goal is to know the strip positions to better than 40 μm on all detection layers.
Plane-to-plane alignment

Mechanical measurement on eta readout panel before assembly
(using laser tracker)

- Position measurement of reference strips on both sides of the η readout panels with respect to a reference pin penetrating the panel.
- The scans of both sides are compared and overlapped at the pin position. The magnification shows the strip-to-strip alignment accuracy better than $20 \mu m$.

![Laser scan](image)

Reference pin

Strips routed to the PCB edge

![Graph](image)
Plane-to-plane alignment

After assembly (using X-rays)

Analysis procedure:
- Fit of the strips profile with double gaussian
- Extraction of the mean value of the core
- Calculation of the mean value between angle 0° and 180°
- Calculation of the difference between the two η layers

Using an X-Ray (Ag) gun, 2 runs at each position reverting the orientation of the gun to correct for possible inclination of the gun inside the box
 - Angle 0°
 - Angle 180°

<table>
<thead>
<tr>
<th>Angle</th>
<th>L1</th>
<th>L2</th>
<th>Mean</th>
<th>L1-L2 [strips]</th>
<th>L1-L2 [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>461.41</td>
<td>460.29</td>
<td>463.04</td>
<td>0.0465</td>
<td>19.297</td>
</tr>
<tr>
<td>180°</td>
<td>464.67</td>
<td>465.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Very good agreement with the mechanical method
Basic performance parameters
Detector Efficiency

Cosmic event

- Minimum cluster size 2 strips
- 1 missing strip accepted
- Threshold on strip charge

Clusterization

- Tracking of the muon using 3 reference layers
- Extrapolation of the expected position on the layer under test
- The presence of a cluster on the layer under test around the expected position defines the efficiency

Efficiency algorithm

- Fermi-Dirac function:
 \[y = \frac{A}{1 + e^{(x - B)/C}} \]
 - A = the plateau value of the efficiency
 - B = the flex point
 - C = how steep is the turn-on curve.

- Differences among the layers is due to small variations of the amplification gap
- HV sectors within the same layer show the same efficiency

Efficiency graphs

- Left HV sector
- Right HV sector

Numerical results

- L1: \(x^2/\text{ndf} = 59.84/3 \)
 - 0: 0.9972 ± 0.0005592
 - 1: 503.8 ± 0.1965
 - 2: 15.65 ± 0.1604

- L2: \(x^2/\text{ndf} = 75.75/3 \)
 - 0: 0.9972 ± 0.0007443
 - 1: 517.6 ± 0.1502
 - 2: 15.96 ± 0.1296

- L3: \(x^2/\text{ndf} = 144.7/3 \)
 - 0: 0.9999 ± 5.097e-05
 - 1: 528.5 ± 0.1531
 - 2: 17.21 ± 0.09755

- L4: \(x^2/\text{ndf} = 53.24/3 \)
 - 0: 0.9999 ± 0.0003154
 - 1: 531.3 ± 0.1525
 - 2: 18.34 ± 0.1121
Gain Uniformity after assembly

X-Rays

- Monitor of the amplification current
- X-Ray settings: HV=50kV, I=50μA, 2 mm collimator (cone angle 5°)
- 228 different points
- Layers under study set to 560V

Cosmic rays

- A window of 20 strips around each area that was irradiated with the X-rays is considered
- For each (x,y) point the cluster charge has fitted with a landau function. The MPV was extracted and plotted to the corresponding position
Gain Uniformity after assembly

X-Rays

L3 X-Ray current

Cosmic rays

MPV of cluster charge L3

Amplification current compared with the cluster charge (Layer 3)

- X-ray
- Cosmics

Very good agreement between X-Rays & cosmics
Resolution of 88 μm for the precision coordinate (η) and 2.28 mm for the transverse (φ) one has been obtained.
A dedicated irradiation facility with photon energy of ~662 KeV and flux up to 10^8 cm$^{-2}$s$^{-1}$:

Filter system permits attenuating the photon flux in several steps to reach attenuation factors of several orders of magnitude (~1 - 10^5)

R.Guida (5/8/16): GIF++ A new CERN irradiation facility to test large-area particle detectors for HL-LHC
The steps of currents at different attenuation filters are because of the voltage scans (amplification & drift).

Data with muon beam were taken with source and different attenuation filters:

- Spatial resolution for precision coordinate at muon beam (photon source off):

\[\sigma / \sqrt{2} = 75 \mu m \]

Poster Session on Monday: Performance studies under high irradiation of resistive bulk-micromegas chambers at GIF++
Conclusions

- The construction of the first large four-plane resistive Micromegas detector was achieved serving as prototypes for large experiments.
- The alignment of the readout layers was measured during the construction using a laser and after the assembly using X-Rays. Both methods agree on alignment better than 20 μm.
- The gain uniformity has been studied with both X-Rays and Cosmic rays providing comparable results.
- The intrinsic spatial resolution was determined in an electron and muon beam to be better than 100 μm in the precision coordinate.
- Analysis of data with muon beam and photon background is ongoing.
- The detector is currently installed in GIF++ for long term ageing studies.
Thank you!!!
BACK-UP
Cosmic set-up

- Cosmic stand composed by two planes of 12 scintillators in the CERN GDD laboratory of the RD51 Collaboration.
- Total area $\sim 2.5 \text{ m}^2$

DAQ based on the SRS
- 32 APVS
- 2 FEC fully equipped
- dedicated DAQ software