Atmospheric Neutrino Results from Super-Kamiokande

Zepeng Li, Duke University
For The Super-Kamiokande Collaboration
Super-Kamiokande

- Super-K is a 50 kton water Cherenkov detector with 22.5 kton of fiducial volume at 2,700 m.w.e underground.
- The detector is optically separated into ID and OD.
- Excellent in detection of atmospheric neutrinos.
- 20 years since the start of data taking in 1996, >47,000 atmospheric neutrino events.
- A Nobel prize winning experiment!

Four Run Periods:
Atmospheric neutrinos in SK

Event categories

~13,000 km

~10 km

cosmic rays

\(\pi^\pm, K^\pm \)

\(\nu^u \)

\(\nu^e \)

\(\nu^e \)

\(\nu^\mu \)

Full contained

Partially contained

Upward muon

ICHEP 2016
Atmospheric neutrinos in SK

Sub-GeV to more than 10 TeV neutrino energy.
Atmospheric neutrinos measurement in SK

SK measures the flux of atmospheric neutrino with energy of sub-GeV to ~10 TeV. The measurement is consistent with model prediction.

With the large sample, SK can test the effects on atmospheric neutrino flux of geo-magnetic field, solar activity, etc.
Atmospheric neutrinos measurement in SK

Cosmic rays are mostly positive charged.

SK observes clear azimuthal dependence for both μ-like (6.0σ) and e-like (8.0σ) samples due to the effect of geo-magnetic field, and no significant solar modulation of atmospheric neutrino flux.

Fitted α as degree of solar modulation, α=0: no correlation, 1:expected

arXiv:1510.08127
Neutrino oscillations at Super-K

Leading effect is ν_μ disappearance ($\nu_\mu \rightarrow \nu_\tau$).
ν_τ appearance from neutrino oscillations could be detected by charged current ν_τ interaction in SK.
Tau neutrino appearance in SK

- Tau lepton production is rare in SK due to 3.5GeV energy threshold of charged-current ν_{τ} interaction.
- Multiple light-producing particles from tau decay.
- Neural network(input variables in backup) to select hadronic tau decay events.

 Tau lepton decays in $\sim 10^{-13}$s, tau lepton track is undetectable in SK detector.
Tau neutrino appearance in SK

\[\alpha = 1.47 \pm 0.32 \] preliminary

compared to simulation

\((4.6\sigma \text{ from } 0) \) assuming NH

Sensitivity at \(\alpha = 1: \ 3.3\sigma \)
SK1-4 0.33 Mtyr data and MC

3 flavor oscillation at best fit and reactor θ_{13} for MC.
Neutrino oscillations at Super-K

Leading effect is ν_μ disappearance.
Sub-leading effects help to resolve θ_{23} octant, δ_{CP} and mass hierarchy.
Neutrino oscillations at Super-K

$P(\nu_\mu \rightarrow \nu_\mu)$

$P(\nu_\mu \rightarrow \nu_e)$

Oscillation probability has dependence on $\sin^2 \theta_{23}$

Ratio to two-flavor oscillations shown. Multiple samples used in the analysis.

More ν_e at $\pi < \delta_{CP} < 2\pi$.

Matter effect and large θ_{13}, ν_e enhanced at NH.
SK oscillation analysis-θ₁₃ constrained

• θ₁₃ is constrained at PDG average, uncertainty is included as a systematic error.

• Δχ² = χ²_{NH} - χ²_{IH} = -4.3 (-3.1 of sensitivity)

• The p-value of obtaining Δχ² of -4.3 or less is 0.031 (sin²θ₂₃=0.6) and 0.007 (sin²θ₂₃=0.4) in IH hypothesis. Under NH hypothesis, the p-value is 0.45 (sin²θ₂₃=0.6).

| Fit (517 dof) | χ² | sin²θ₁₃ | δ_CP | sin²θ₂₃ | |Δm²_{32}|| eV² |
|---------------|----|---------|------|---------|-------------|----------------|
| SK (IH) | 576.0 | 0.0219 | 4.2 | 0.58 | 2.5x10⁻³ |
| SK (NH) | 571.7 | 0.0219 | 4.2 | 0.59 | 2.5x10⁻³ |
Oscillation analysis with constraint from published T2K data

$\Delta \chi^2 = -5.2$ (-3.8 of sensitivity for SK best, -3.1 for combined best)

The p-value of obtaining $\Delta \chi^2$ of -5.2 is 0.024 ($\sin^2 \theta_{23} = 0.6$) and 0.001 ($\sin^2 \theta_{23} = 0.4$). Under NH hypothesis, the p-value is 0.43 ($\sin^2 \theta_{23} = 0.6$).
Summary

• Measurement of atmospheric neutrino flux of energies from sub-GeV to 10 TeV.
• Tau neutrino appearance with significance of 4.6σ.
• Normal hierarchy preferred by $\Delta \chi^2 = -5.2$, p-value is between 0.024 ($\sin^2 \theta_{23} = 0.6$) and 0.001 ($\sin^2 \theta_{23} = 0.4$) in IH hypothesis.
• Weak preference of second octant and δ_{CP} near $3/2\pi$.
• More analyses in SK, indirect WIMP search in poster session.
Super-Kamiokande Collaboration

1 Kamioka Observatory, ICRR, Univ. of Tokyo, Japan
2 RCCN, ICRRResearch, Univ. of Tokyo, Japan
3 University Autonoma Madrid, Spain
4 University of British Columbia, Canada
5 Boston University, USA
6 Brookhaven National Laboratory, USA
7 University of California, Irvine, USA
8 California State University, USA
9 Chonnam National University, Korea
10 Duke University, USA
11 Fukuoka Institute of Technology, Japan
12 Gifu University, Japan
13 GIST College, Korea
14 University of Hawaii, USA
15 Imperial College London, UK
16 KEK, Japan
17 Kobe University, Japan
18 Kyoto University, Japan
19 University of Liverpool, UK
20 Miyagi University of Education, Japan
21 National Centre For Nuclear Research, Poland
22 Okayama University, Japan
23 Osaka University, Japan
24 University of Oxford, UK
25 Queen Mary University of London, UK
26 University of Regina, Canada
27 Seoul National University, Korea
28 University of Sheffield, UK
29 Shizuoka University of Welfare, Japan
30 STE, Nagoya University, Japan
31 Sungkyunkwan University, Korea
32 SUNY, Stony Brook, USA
33 Tokai University, Japan
34 University of Tokyo, Japan
35 Kavli IPMU (WPI), University of Tokyo, Japan
36 Dep. of Phys., University of Toronto, Canada
37 TRIUMF, Canada
38 Tsinghua University, China
39 University of Washington, USA

~150 collaborators
39 institutions
8 countries
Backups
Seasonal variation

No seasonal variation is seen as expected.
Tau analysis

Seven input variables to neural network. Fit result for different samples, signal/BG MC scaled by fit result.
Fitted systematic errors in tau analysis

Fitted deviation in unit of σ of systematic errors

Fitted value of systematic terms, distributed around 0.

\[
\text{error}_{\text{fit}} = \text{mean} - \text{sigma}_{\text{input}} - \text{sigma}_{\text{fit}}
\]
Paper fit update of tau analysis

![Graphs showing distributions of events in different categories: Tau-like, Non-Tau-like, Upward, Downward, with signal fractions and background projections.]

Tau fraction: $1.37 \pm 0.23^{+0.13}_{-0.11}$, the significance is 5.1σ.
Improved MH sensitivity with T2K constraint

$\Delta \chi^2$ Wrong Hierarchy Rejection

- NH
 - SK+T2K
 - SK only

- IH
 - SK+T2K
 - SK only

δ_{CP} Uncertainty
p-value for MH preference

SK analysis with T2K constraint.
MH preference in sub-samples

Δχ² = χ²_{IH} - χ²_{NH}
Hierarchy preference in sub-samples

\[\Delta \chi^2 = \chi^2_{\text{NH}} - \chi^2_{\text{IH}} : +0.35 \]

Multi-Ring e-like ν_e

Multi-GeV e-like ν_e

Multi-Ring others

-2.97

Multi-GeV e-like ν_e

-2.18

Multi-Ring e-like ν_e

-0.92
Indirect WIMP search

Search for an excess of neutrinos from galaxy, sun or earth (shown in the plot).

Indirect Dark Matter Searched with Super-Kamiokande
Poster by K. Frankiewicz

Preliminary sensitivity result of 90% CL limits for background only scenario for WIMP decay in earth core.