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Abstract

PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, is a phased experiment at the High Flux Isotope Reactor in Oak Ridge National Laboratory. Phase I will consist of a movable 3-ton Li-6 loaded liquid scintillator detector with a baseline
coverage from 7 to 12 meters from the reactor core. A larger, second detector during Phase II extends the baseline range to 19 meters. One of the main physics goals of the experiment is to measure electron anti-neutrino disappearance from the highly enriched

uranium core in order to search for sterile neutrinos. This poster describes the predicted sensitivity and discovery potential of the experiment to eV-scale sterile neutrinos using a spectrum-based oscillation analysis.

Motivation: The Reactor Anomaly

Measurement Stategy

1.2
o Reactor models predict more neutrinos than are s | |
. . o 1 N Y Ll -1
observed by existing flux measurements [1,2,3]. 3 i {H {i { |
ol .
e Are our models wrong? Or is something 5 osl ’ BRI
Ise h ‘ h illation t > I 70 Experiments Unc,
else happening, such as an oscillation to 10 Experimen
sterile neutrinos? 0.6t BT R—e
Distance (m)

o We need new reactor measurements at short
baselines to resolve this question.

Experimental Input Parameters

Reactor: High Flux Isotope Reactor €

o Compact, cylindrical core (0.5m high, 0.4m diameter).
e 85 MW power.

e Highly enriched uranium fuel.

o Seven 25-day cycles/year.

Detector

o 12x10 matrix of optically separated segments.
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o 14.6x14.6x120cm segment size.
e Li-6 loaded liquid scintillator.

02940 (1480) kg target (fiducial) mass.

o Movable design to increase baseline coverage (7-12m). ?O;

Signal: Inverse Beta Decay %10

o Fiducial volume cut of the outer edge cells. g“%

0 41.7% fiducialized efficiency. *5102§
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5% /v E target energy resolution.
e 115,000 ev/year.

Backgrounds: Primarily Cosmics
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e Significant reactor downtime for background
subtraction measurements.
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e 3:1 signal to background based on Monte Carlo.

Second Detector Extension

o Further space outside the HFIR complex is available for a larger
longer-baseline detector.

o A 10-ton detector at 15-20m can investigate any oscillation
signature uncovered with the first detector.

o Extending the baseline allows an expanded
investigation into the lower Am?’ parameter space.
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The arrangement of the detectors around the HFIR facility [4].

The ratio between measured and predicted reactor fluxes. The shaded
region indicates the range of baselines seen by PROSPECT [Modified
from 3].

Power map of the HFIR core [Modified from 5.

Monte Carlo simulation of the IBD event selection showing the
result of successive cuts [Modified from 4].

e PROSPECT can resolve the reactor antineutrino anomaly by probing its L/E

nature.

o HFIR core provides a pure **U flux.

e Measure inverse beta decays across a range of baselines within a segmented detector.

e Baseline-dependent changes in prompt spectrum would be a clear indication of sterile oscillations.

e Uncertainties in the reactor flux or spectrum could not reproduce this baseline-dependent feature.
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Sensitivity:

Phasel (3 yr) a 30
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SBL Anomaly (Kopp), 95% CL
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The increased coverage achieved by adding a second
detector is shown by the dashed lines [Modified from
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Beyond 3+1 Oscillations

o L/E distributions from short-baseline reactor experiments show discovery potential

for other Beyond Standard Model physics.
o If the I
o PROSPECT
o If the I

LL./E distribution fits to a complex sinusoid: 3+N oscillations.
has a strong capability to distinguish 3+1 from 3+N.

LL./E distribution is non-sinusoidal: CPT violation? Something else?
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An example of the non-sinusoidal L/E nature of the 34N scenario [6].
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Example of the appearance of oscillation in terms of energy and baseline bins in the PROSPECT detector.

Sensitivity:
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PROSPECT sensitivity with a single movable detector [Modified
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o A \? test was applied between the simulated IBD
prompt spectrum (75;) and background (B;;) and a
toy oscillated spectrum (M;,).

e Parameters a account for systematic uncertainties
in signal and background.

e [ixclusion contours were determined from the
evaluation of a null oscillation model with respect to
a 3+1 neutrino model parameterized by (Am3,, 614).

o Best-fit values for sterile neutrinos from
previous experiments can be excluded

above 30 with a single year of
PROSPECT data.
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o o Three years of PROSPECT data will vield high
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Asymmetry between oscillated and un-oscillated L/E spectra using

the PROSPECT detectors [4].

Need More PROSPECT?

Check out the other posters:

@ T. Langford: The Development and Characterization of
PROSPECT Detectors.

@ P. T. Surukuchi: Design of the PROSPECT Experiment.

@ X. Zhang: Precision Measurement of the Reactor
Antineutrino Spectrum with PROSPECT.

@ B. Littlejohn: Mitigation of Near-Surface Cosmogenic

Background for the PROSPECT Experiment.

This talk:

@ M. Mendenhall: PROSPECT: A short-baseline Reactor

Precision Spectrum and Oscillation Experiment.

And these papers:

@ arXiv:1512.02202: The PROSPECT Physics Program

@ arXiv:1506.03547: Background Radiation Measurements at
High Power Research Reactors

@ arXiv:1508.06575: Light Collection and Pulse-Shape
Discrimination in Elongated Scintillator Cells for the
PROSPECT Reactor Antineutrino Experiment

@ arXiv:1309.7647: PROSPECT - A Precision Reactor
Oscillation and Spectrum Experiment at Short Baselines

And this website:
@ http://prospect.yale.edu/
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