THE UPGRADED PIXEL DETECTOR OF THE ATLAS EXPERIMENT FOR RUN-2 AT THE LHC

MARIO PAOLO GIORDANI
Università degli Studi di Udine — INFN Trieste

on behalf of the ATLAS Collaboration
- Innermost part of ATLAS Inner Detector
- 3 cylindrical layers, 5.05-12.25cm from beamline
- 3 disks per side, 49.5-65cm from IP
- 1744 identical hybrid modules
 - n-in-n planar sensors, 47232 $50 \times 400 \mu m^2$ pixels
 - 16 FE-I3 chips/sensor, each reading 18×160 pixels
 - 40-160Mbps transmission lines to back-end

- Data taking with efficiency of 97.5% to 95% across Run-1
- 88 disabled modules at the end of the run
- Detector refurbishment (new services) at the end of Run-1
 - 55 recovered modules, doubled Layer-1 fibres (bandwidth to 160Mbps)
• Motivated as B-Layer back-up against failures due to radiation and readout inefficiencies
• Directly clamped to new narrower beam-pipe at 3.325cm from beamline
• Additional material compensated by enhanced tracking performance
• Major technological challenge
 • insertion in pixel package (2mm mechanical clearance)
 • higher particle flux (i.e. occupancy, radiation) than B-Layer
• New FE-I4 readout chip, mixed sensor technology
 • 160Mbps transmission to back-end
 • fitting common sensor layout (80×336 50×250μm² pixel matrix)
 • 200μm-thick n-in-n double chip planar modules
 • 230μm-thick n-in-p 3D single chip modules
- Turbine layout for hermetic track coverage
 - Stave tilt angles chosen to compensate for Lorentz force
 - Minimise charge sharing between pixels

- Module shingling in pixel detector not achievable in IBL due to very limited clearance
 - Longitudinal hermeticity addressed by slim edge sensor design

Chapter 4 - ATLAS Pixel Detector

- The sensitive part of the detector is about 1.3 m long, 35 cm in diameter and has a weight of 4.4 kg. It consists of three coaxial cylindrical barrel layers (B-layer, Layer-1 and Layer-2 from inner to outer one) with nominal radii of 50.5, 88.5 and 122.5 mm, respectively [BAR02]. All support structures are made of carbon composite materials.

 The global carbon-carbon honeycomb core support structure is locating the layers, holding 22, 38 and 52 structural elements, so-called staves. Staves of a layer overlap along a tilted sequence with a tilt angle of 20°. Each layer consists of two half-shells.

- Electro-Magnetic Interference (EMI) shielding is provided by a 50 µm aluminum layer directly bonded to the shells. The PST serves as a support structure for the Pixel Detector as well as for the BPSS. It allows an individual installation of the Pixel Package and keeps the Pixel volume environmentally (gas sealed and thermal isolated) and electrically (Faraday cage) independent from other sub-detectors. The PST volume is flushed with N₂ (~0.5 m³/h) and is kept on a slightly higher pressure (up to 4 mbar) compared to its air surroundings. Therefore the PP1 endplates provide gas inlet and outlets for dry nitrogen as well. The PST external surface incorporates copper-on-Kapton heaters designed to keep the outer temperature above dew point in case of Pixel access and failure of the primary Inner Detector dry containment [AND02a], [SMI03].
FE-I3 and FE-I4 are digital readout chips

Signals from collected charge is digitised after amplification

- detector FE returns Time-over-Threshold (ToT): duration of signal above analog threshold in units of 25ns
- rising edge at threshold assigns timestamp to hit
- further possibility of controlling occupancy by acting on digital threshold (i.e. rejecting hits with small ToT)
- requires charge-ToT calibration for operating detector and for comparison with MC

ToT information is used in tracking

- track association based on NN algorithm exploiting cluster shape/charge distribution

DIGITAL READOUT: TOT

[Chart 1: Performance at Run 2]

Time over Threshold

Recording the Time-over-Threshold (ToT) allows the measurements of deposited charge.

- It is readout in unit of BC (25ns) together with the hit information
- It is converted to charge thanks to the calibration made at the FE injection circuit

The charge measurement is used for:

- Tracking: Neural Network (NN) cluster seed and improvement of residuals
- Energy loss dE/dx and material identification
- Some physics studies like SUSY and Exotics

IBL cluster ToT

Calibration for 1MIP at 10BC

Pixel cluster ToT

Calibration for 1MIP at 30BC

IBL cluster ToT

Calibration for 1MIP at 10BC

Pixel cluster ToT

Calibration for 1MIP at 30BC
Based on $Z \to \mu \mu$ data collected in 2015 compared with MC
- Hit reconstruction + track association efficiency greater than 98%
- Transverse and longitudinal hit spatial resolutions of 10.0 and 66.5μm respectively
 - from sample of tracks traversing overlapping modules and having hits in both of them
 - single hit resolution from corrected hit position difference, Δr-\ϕ and Δz: $\sigma_{\text{point}} = \sigma_{\Delta} / \sqrt{2}$
- Efficiency along z probing slim edge design, consistent with expectations
- 4-layer 92Mpixel tracker at work!
- 2015 Run-2 vs Run-1 data comparison
 - enhanced tracking performance over all acceptance
 - overall improvement on impact parameter resolution by approximately a factor 2, in line with simulations
 - loose track selection
 - transverse and longitudinal impact parameter unfolded to remove contribution from vertex resolution
 - beneficial effects of reduced material (Be beam pipe), distance from IP and longitudinal pitch

This translates in a +10% on b-tagging efficiency for similar background rejection
- Good overall data-taking efficiency
 - Pixel/IBL can sustain high rates (85kHz) with low dead-time (less than 2-3%)
 - there have been several improvements during last year targeting mainly IBL and Layer-2
 - B-Layer is under the lens now
- Tracking efficiency affected by synchronisation errors
 - very sensitive to beam conditions (instantaneous luminosity, number of interactions per BC)
- Ongoing work on automatic recovery procedures expected to improve the situation

ATLAS pp 25ns run: April-July 2016

<table>
<thead>
<tr>
<th>Inner Tracker</th>
<th>Calorimeters</th>
<th>Muon Spectrometer</th>
<th>Magnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>SCT</td>
<td>TRT</td>
<td>LAr</td>
</tr>
<tr>
<td>98.9</td>
<td>99.9</td>
<td>100</td>
<td>99.8</td>
</tr>
</tbody>
</table>

Good for physics: 91-98% (10.1-10.7 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at √s=13 TeV between 28th April and 10th July 2016, corresponding to an integrated luminosity of 11.0 fb⁻¹. The toroid magnet was off for some runs, leading to a loss of 0.7 fb⁻¹. Analyses that don’t require the toroid magnet can use that data.
- IBL distortion discovered during 2015 cosmic runs, correlated to temperature changes (10μm/K)
- Induced by CTE mismatch between stave carbon structure and Cu/Al flex, reproduced by FEA
 - protect detector wrt rapid thermal cycles in order to prevent mechanical failures
- Corrected by Inner Detector alignment procedure
 - necessary if temperature varies by more than 0.2K during run
 - after September, in-run alignment procedure recovers tracking performance

OPERATIONAL ISSUES: IBL DISTORTION
Steep rise in IBL LV currents observed in 2015 since the beginning of September

- potentially catastrophic due to temperature increase and risk of electrical failure

Correlated to 130nm n-MOS FE transistor leakage current

- hole trapping in bulk oxide dominating the beginning of irradiation, fast annealing
- interface trap generation dominating at high TID (rebound effect), annealing at high temperatures

Ad-hoc irradiation campaign on FE samples

Effect controlled by operating temperature
Bandwidth limitations in back-end transmission observed already at the end of Run-1
Layer-1 and Layer-2 back-end electronics subject of upgrade in 2015-2016
 - relying on recent hardware used for IBL and capable of up to 160Mbps transmission speed
Installation completed for Layer-2
 - exploits up to 80Mbps bandwidth due to available fibres
 - successfully recommissioned in 2016
Upgrade will continue with Layer-1
 - new services deployed during IBL installation included double fibres for Layer-1 (160Mbps achievable)
Might want to extend the same treatment to the rest of the detector (B-Layer and disks)
 - opportunity of running more recent and robust hardware to the 2020+
 - we are expected to collect 10× more data till the end of Run-3
 - uniform readout system easier to maintain
 - benefit from more powerful diagnostic tools in order to prevent issues in data-taking
Successful operation of ATLAS 4-layer pixel detector to (almost) design conditions in 2016
- 13TeV, peak luminosity exceeding $1.1E34\text{cm}^{-2}\text{s}^{-1}$ and average μ consistently above 40 at beginning of fill
- data taking efficiency steadily above 95% with trigger rates in the 80kHz’s and dead time of 2-3%
- So far IBL has complemented B-Layer, boosting the tracking performance observed in Run-1
 - precision tracking and vertexing are at the basis of any discovery (or precision measurement)
- However, detector operation is becoming increasingly challenging with LHC performance
 - there is a long way to go before the next major upgrade in the years 2020+
 - it will be important to preserve and tune the detector in order to operate it at its optimal performance
 - we are getting ready to operate the detector beyond its design specs (thanks to an outperforming LHC)
 - this requires enhancing our diagnostic capabilities in order to promptly mitigate problematic situations
- There are lessons to be learnt for the future, when detectors will face harsher conditions
 - so far we faced (and solved) some serious issues thanks to the dedication of a great team
- We must all remember that good physics necessarily requires good detector operations
 - and that operation experience is necessary to build future detectors
BACK-UP MATERIAL
New Service Quarter Panels installed during LS1
- Electrical-optical conversion moved outside ID volume ➔ improved accessibility
- Accessible connections and services of faulty modules repaired
- Added fibres ➔ doubled readout speed capabilities for Layer-1 (2×80Mbps)

BACK-UP: NSQP AND PIXEL REFURBISHMENT
Tracking improvements immediately translate on b-tagging performance

- Run-2 vs Run-1 detector and reconstruction simulation comparison
 - better light and c-jet rejection over the whole acceptance and p_T spectrum allow +10% b-tag efficiency
 - in most analyses, this means moving from 70% to 77% efficiency for similar background rejection
 - IBL plays a role in low-p_T rejection, while high-p_T performance due to algorithm improvements
- Comparison based on two fills
- Very different operating temperature, very similar performance
BACK-UP: TIMING

ATLAS Pixel Preliminary
March 2015

Number of Modules / 0.05 Bunch Crossing

Average Relative Bunch Crossing ID [Bunch Crossing]

Pixel Barrel
Pixel Disk
IBL
Before the start of Run-2, campaign to evaluate effects of magnetic field on wire bonds

- ad-hoc PCB used for extensive testing
- AC current mimicking trigger signal with varying frequency and direction wrt magnetic field
- lab measurements proved that induced oscillations can damage or break wires or their bonds
- observations confirmed by FEA simulations
- triggering at wire resonant frequencies (with harmonics and sub-harmonics) must be avoided

Protective countermeasure: Fixed Frequency Trigger Veto implemented in DAQ chain/calibration

- sustainable trigger rate depends on LHC filling scheme and bunch pattern
- never a limitation in data taking, in particular with filled machine (definitely the case in 2016)
- impact of protection decreases with number of bunches in the LHC, not a concern any longer
- still an effective protection in pathological situations

BACK-UP: IBL WIRE BONDS PROTECTION