Charm-Hadron Production at Hadron Colliders

Miriam Watson University of Birmingham

ICHEP 2016

38th International Conference on High Energy Physics Chicago 3rd - 10th August 2016

Introduction: Charm hadrons

- More than 15 papers or conference notes on charm hadrons since last summer
- A brief tour through these recent results
- Many previous papers not covered here
- Hidden charm production
 - Charmonium in pp collisions at 7, 8 and 13 TeV

Open charm

- D meson production in pp and pp collisions
- D meson production in pPb and PbPb collisions
- Multiplicity dependence and azimuthal correlations

Associated production

- Y and open charm
- J/ψ+Y, J/ψ+J/ψ
- More results in "X(3872) and its bottomonium counterpart" (Konstantin Toms) and in the Heavy Ion sessions

Overview of charmonium analyses

- Use di-muon decays J/ψ , $\psi(2S) \rightarrow \mu\mu$:
 - Easy for reconstruction and triggering
 - Di-muon triggers with invariant mass windows
- <u>Prompt:</u> Produced directly in the pp interaction or through feed-down decays from higher charmonium states
- <u>Non-prompt:</u> Produced in decay chain of B-hadrons (decay vertex can be displaced from primary pp vertex)

Differential J/ ψ , ψ (2S) cross sections, 7+8 TeV (pp)

- Prompt and non-prompt production:
 - J/ψ, ψ(2S) at 7 TeV (2.1 fb⁻¹), 8 TeV (11.4 fb⁻¹)
 - Double-differential: range $8 < p_T \le 110$ GeV and |y| < 2
- Prompt compared to NLO NRQCD theory calculations
- Fair agreement between calculation and data

- Non-prompt compared to fixed-order-next-to-leadinglog (FONLL) calculations
- J/ψ: FONLL predicts slightly harder p_T
- $\psi(2S)$: Shapes agree, but yields higher in FONLL

arXiv:1512.03657,

Eur. Phys.J. C76

(2016) 5, 283

Forward quarkonium production at 8 TeV (pp)

- Inclusive production:
 - J/ψ, ψ(2S) at 8 TeV (1.2 pb⁻¹)
 - Differential: range $0 < p_T < 20$ (12) GeV and 2.5<y<4

arXiv:1509.08258, Eur. Phys. J. C 76 (2016) 184

Quarkonium production at 13 TeV (pp)

CMS-PAS-BPH

-15-005

Forward J/ ψ production at 13 TeV (pp)

- Prompt and non-prompt production:
 - J/ψ at 13 TeV (3.05 pb⁻¹)
 - Double-differential: range $p_T < 14$ GeV and 2.0<y<4.5

JHEP10(2015)172

arXiv:1509.00771,

Open charm production: D mesons

- D mesons produced in c and b fragmentation
- Theoretical calculations to NLO and NLL
- Still large theoretical uncertainties (scales, multiple interactions)
- Aim:
 - Test QCD
 - Understand backgrounds to new physics
 - Baseline for heavy ion collisions
- Decay modes:
 - $D^0 \rightarrow K^- \pi^+$
 - $D^+ \rightarrow K^- \pi^+ \pi^+$
 - $D_s^+ \rightarrow \phi \pi^+ \rightarrow (K^- K^+) \pi^+$
 - $D^{*+} \rightarrow D^0 + \pi^+ \rightarrow (K^- \pi^+) + \pi^+$ (+charge conjugates)

D⁺ meson production at low p_T , $\sqrt{s}=1.96$ TeV ($p\overline{p}$)

CDF note 11199, June 2016

• $D^+ \rightarrow K^- \pi^+ \pi^+$ in full Run II dataset (10 fb⁻¹)

- p_T >1.5 GeV and |y|<1
- Simultaneous fit to mass and transverse impact parameter

$$\sigma(D^+, p_T > 1.5 \text{ GeV}/c, |y| < 1)$$

= 71.9 ± 6.8(stat) ± 9.3(syst) µb

Measurements lie in FONLL uncertainty band, but some shape difference

- Fiducial cross-sections for D^{*+}, D⁺, D_s⁺: $3.5 < p_T < 100$ GeV, $|\eta| < 2.1$
- Differential cross-sections for D*+, D+ compared to NLO predictions:
 - GM-VFNS agrees both in shape and normalization
 - FONLL, POWHEG, MC@NLO ~agree within large theoretical uncertainties
 - MC@NLO shape differs from data in $|\eta|$ at higher p_T
- Extrapolated to give total $c\bar{c}$ cross-section and charm fragmentation ratios

 $\sigma_{c\bar{c}}^{\text{tot}} = 8.6 \pm 0.3 \text{ (stat)} \pm 0.7 \text{ (syst)} \pm 0.3 \text{ (lum)} \pm 0.2 \text{ (ff)}_{-3.4}^{+3.8} \text{ (extr) mb}$

D meson production in pp (and pPb)

arXiv:1605.07569, sub. to JHEP

 Cross-sections for D⁰,D⁺,D_s⁺,D^{*+}: pp at 7 TeV, pPb at 5 TeV

- D⁰ production down to p_T=0 without vertexing: background estimates from 4 methods
- Combine with vertexing results for highest precision

$$\sigma_{pp,7TeV}^{c\overline{c}} = 8.18 \pm 0.67 \,(\text{stat.})_{-1.62}^{+0.90} \,(\text{syst.}) \\ _{-0.36}^{+2.40} \,(\text{extr.}) \pm 0.29 \,(\text{lumi.}) \pm 0.36 \,(\text{FF}) \,\text{mb}$$

(qn) າ_{ບີ}10⁴ ຍ LAS extr. unc LHCb (total unc.) STAR PHENIX VLO (MNR 10 HERA-B (pA) 10^{2} E653 (pA) V E743 (pA) 🗸 NA27 (pA) NA16 (pA) 10 E769 (pA) 10^{3} 10^{2} 10 10^{4} √s (GeV)

13

Multiplicity dependence and azimuthal correlations (pp, pPb)

arXiv:1602.07240, arXiv:1605.06963, sub. to JHEP,EPJC

Yields for D⁰, D⁺ and D^{*+} as a function of charged particle multiplicity

Average D meson yields in p_T bins

Yield increase independent of p_T <u>Faster than linear</u> increase with multiplicity at central rapidity

Consistent with models which produce cc in multi-parton interactions

- Azimuthal correlations: hadronic activity near and away from D-meson momentum vector
- Very similar for pp, pPb
- Described by Pythia and Powheg MC

Miriam Watson ICHEP2016

lear side

Away side

Associated production of Y and open charm (pp)

arXiv:1510.05949, JHEP 07(2016)052

- Combine D⁰, D⁺, D_s⁺, Λ_c⁺ with Y(1S,2S,3S) in 7, 8 TeV pp data
- Observe production of Y(1S)D⁰, Y(2S)D⁰, Y(1S)D⁺, Y(2S)D⁺, Y(1S)D_s⁺

Cross-sections and kinematic distributions consistent with <u>double parton scattering (DPS)</u>

Prompt J/ ψ pair production (pp)

- J/ψ pairs at 8 TeV (11.4 fb⁻¹)
- p_T > 8.5 GeV and |y| < 2.1
- Fraction from DPS determined from kinematic correlations

Summary

- Many results from LHC Run1 and Tevatron Run II allow detailed tests of QCD
 - Quarkonium and open charm states
 - Comparison of pp, pp, pPb and PbPb environments
 - Double-parton scattering estimates
- First results from LHC Run 2 have been presented, using 13 TeV collisions
- New data extend the reach to higher $p_{\rm T}$ and continue to probe our understanding of QCD phenomena
- Public results from LHC and Tevatron:
 - https://twiki.cern.ch/twiki/bin/view/ALICEpublic/ALICEPublicResults
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic
 - http://www-cdf.fnal.gov/physics/physics.html
 - http://cms-results.web.cern.ch/cms-results/public-results/publications/
 - http://www-d0.fnal.gov/Run2Physics/WWW/results.htm
 - https://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-Physics-Results.html

$\psi(2S)$ and X(3872) \rightarrow J/ $\psi \pi^+\pi^-$ at 8 TeV

- See talk by Konstantin Toms
- X(3872): 'Exotic resonance' previously measured by Belle, BaBar, CDF, D0, CMS
- Mass of X(3872) close to $D^0 \overline{D}^{*0}$ threshold
- J/ψ π⁺π⁻ decay channel
- 11.4 fb⁻¹ at 8 TeV

Prompt: NRQCD slightly overestimates at high p_T , Colour Singlet underestimates

Non-prompt: FONLL describes data well

$\psi(2S)$ and X(3872) \rightarrow J/ $\psi \pi^+\pi^-$ at 8 TeV

ATLAS-CONF-2016-028, June 2016

Non-prompt fractions agree with JHEP 04 (2013) 154, Phys. Rev. Lett. 114 (2015) 191802 within uncertainties

NRQCD agrees well: interprets X(3872) as a mixed $\chi_{c1}(2P)$ - $D^0 \overline{D}^{*0}$ state

FONLL recalculated for X(3872) overestimates data

22