

TOKYO METROPOLITAN UNIVERSITY

First double-detector results from Double Chooz experiment

38th ICHEP @ Chicago, 4 August 2016

Tsunayuki Matsubara (Tokyo Metropolitan University) on behalf of the Double Chooz collaboration

Double Chooz collaboration...

θ₁₃ measurement with reactor neutrinos

Features of reactor θ₁₃ **measurement**

- Reactor is free and rich Ve source
 Direct measurements of θ₁₃ with
 Ve disappearance at 1 km baseline as:
 P(νe→νe) = 1 sin² 2θ₁₃ sin² (Δm²₃₁L)/4E + O(10⁻³)
- Background is strongly suppressed by delayed coincidence technique
- Systematic uncertainties are further reduced by two identical detectors

Double Chooz is pioneer of reactor experiments to measure the θ_{13}

- Improvements from Chooz w/ stable Gd-LS & new det. structure (Proposal@2006)
- First indication of non-zero θ₁₃ at 94% C.L. (LowNu@2011, PRL 108 (2012) 131801)
- First θ₁₃ results using Hydrogen capture signal (PLB 723 (2013) 66-70)
- Report of spectral distortion around $E_v = [5, 7]$ MeV (JHEP 1410 (2014) 086)
- θ_{13} measurements with multi-detector setup (Since 2015, this talk)

Detection principle of reactor neutrinos

IBD reaction:
$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Two independent samples of Gd/H capture measured by delayed coincidence technique

- Prompt signal (e⁺ ionization & annihilation) E_{prompt} = 1~8 MeV
- Delayed signal (Neutron capture) E_{delayed} = ~8 (2.2) MeV for Gd (H) capture
- Time coincidence of those
 - $\tau \sim 30$ (200) µs for Gd (H) capture

In this IBD process, prompt energy is related to neutrino energy

$$E_{vis} = E(kin)_{e^+} + 2m_e$$
$$\simeq E_{\bar{\nu}_e} - (M_n - M_p) + m_e$$
$$\simeq E_{\bar{\nu}_e} - 0.782 \,\text{MeV}$$

→ Spectral shape of the prompt signal gives us further information.

Experimental site

EDF Electricité de France

Two reactor cores 4.27 GW_{th} for each core

L = ~ 400 m ~120 m.w.e. 10 m³ target

Operating since 2015

L = ~ 1050 m ~300 m.w.e. 10 m³ target

Far detector

Operating since 2011

Started Double-detector data taking since early-2015

Double Chooz detector

/ Inner Detector (ID) - three cylindrical layers

v-target (Gd capture) region - Gd-loaded (1 g/l) liquid scintillator (10.3 m³)

γ-catcher (H capture) region - 22.3 m³ liquid scintillator

Buffer region - 110 m³ mineral oil & 390 low-BG 10" PMTs

Detectors for background veto

Inner veto (IV) - Liquid scintillator & 78 8" PMTs in steel tank

Outer veto (OV)

- Plastic scint. strip + WLS fiber + MAPMT

SD: Bugey4 is used as an anchor of reactor v flux (1.7% precision)
→ Nearly iso-flux setup of ND & FD can suppress v flux error (< 0.1%)
→ Identical detector can cancel correlated systematics like det. efficiency.

Preliminary results using FD-I, FD-II and ND data (~461, 212, 150 days of live time) are shown in this talk.

IBD selection & BG veto

Observed IBD rate: ~40 d⁻¹ (FD) and ~300 d⁻¹ (ND)

Remaining BG are:

- Accidental coincidence: e.g.) environmental γ + spallation n
- Fast neutron: $n + p \rightarrow recoil p + n$
- Stopping muon: $\mu \rightarrow e + \nu + \nu$
- (β , n) emitter from spallation products : e.g.) ${}^{9}\text{Li} \rightarrow {}^{8}\text{Be} + e + \nu + n$

IBD candidates & BG estimation

Populations and errors (Double Chooz Preliminary)

	FD-I	Reactor off	FD-II	ND
Live time (d)	460.93	7.24	212.21	150.76
IBD prediction (d^{-1})	$38.04{\pm}0.67$	$0.217{\pm}0.0065$	40.39±0.69	$280.5{\pm}4.7$
Accidental BG (d^{-1})	0070±0.003 0.106±0.002		0.344±0.002	
Fast-n + stop- μ (d ⁻¹)	$0.586{\pm}0.061$			$3.42{\pm}0.23$
Cosmogenic BG (d^{-1})	$(0.97^{+0.41}_{-0.16})$			$(5.01{\pm}1.43)$
Total prediction (d^{-1})	$39.63{\pm}0.73$	$1.85{\pm}0.30$	$42.06{\pm}0.75$	289.3±4.9
IBD candidates (d^{-1})	37.64	0.97	40.29	293.4
(Number of events)	(17351)	(7)	(8551)	(44233)

All BG are measured from data:

- Accidental BG: Off-time coincidence (rate & shape)
- Fast-n + stop-µ: High energy window (rate), IV/OV tagged events (shape)
- Cosmogenic BG: 9Li-enriched data (shape)
 - \rightarrow ⁹Li BG rate is not used in the fit, which is constrained by shape in the fit

Suppression of systematic uncertainties

SD phase: we improved uncertainties. Reactor v flux error was dominant.
 → It is strongly suppressed with two detectors
 DD phase: All systematic uncertainties are < 0.4% (after Rate + shape analysis)
 → Precision is now limited by Statistics. Further improvement is expected!

Preliminary results

Fit FD-I, FD-II and ND data simultaneously w/ predictions

- Chi-square method with systematic errors by pull term & covariance matrix
- Correlation of systematic uncertainties b/w detector periods are considered
- BG rate and shape are estimated from data (Li9 rate is not constrained)
- Observed data in reactor-off period is used → Further BG constraint

Best-fit: $\sin^2 2\theta_{13} = 0.111 \pm 0.018 (\chi^2/dof = 128.8/120)$ Non-zero θ_{13} observation at 5.8 σ C.L.

Double Chooz Preliminary

(11

Current θ_{13} in the world

Precise measurement of θ_{13} by reactor experiments is still a key for current/future v projects for CP violation and mass hierarchy \rightarrow Validation with multiple experiments is essential.

Future prospects

To reach better precision, earlier: Current analysis (Gd-only) is statistically limited → Inclusion of H-capture event (Gd+H analysis!) Pros: Larger volume as target Cons: Increase of Accidental BG by lowering E_d window Systematic error is also challenging → Analytical effort is on going... (Next page)

To reach better precision...

Gd+H analysis

 $\sim 100 \ d^{-1}$

 $\sim 800 \ d^{-1}$

(14)

IBD rate

FD

ND

Gd analysis

 $\sim 40 \ d^{-1}$

 $\sim 300 \ d^{-1}$

- Accidental BG is dramatically reduced by ANN
 - \rightarrow Almost negligible impact to θ_{13} measurement after ANN
- Confirmed x2.5 of IBD rate than Gd only analysis

New analysis is ongoing w/ more stat. & better understandings of syst. → We aims to release our results at CERN seminar (20th Sep.) Stay tuned!

Other physics programs

Neutrino directionality

Direction of incoming v can be observed by a vector from delayed to prompt signals

Observed angle ϕ from ND data

15

Sterile neutrino search

Conclusion

- Reactor θ₁₃ is a key for current and future neutrino projects
 → Validation by multi-experiment is essential

- First θ₁₃ results is reported with the double-detector setup in Double Chooz experiment (FD-I: 460.93 d + FD-II: 212.21 d+ ND: 150.76 d)
 → sin²2θ₁₃ = sin²2θ₁₃ = 0.111 ± 0.018
 - Reactor flux is strongly suppressed to <0.1 % by ND
 - Other systematic uncertainties are suppressed well below 1%
- The precision is currently limited by Statistics
 - \rightarrow New θ_{13} results with Gd+H analysis will come soon
 - Other physics programs are also expected

Poster presentations from Double Chooz experiments:

D. Kaplan et al. , Reactor spectral rate and shape measurement in Double Chooz detectors
A. Meregaglia et al., IBD background rejection and tagging at the Double Chooz experiment
G. Yang, et al. , θ₁₃ oscillation analysis in Double Chooz with two detectors
T. Matsubara et al. , Sterile neutrino search in the Double Chooz experiment

Detector performance

Detector performance is evaluated by

- Various sources like ⁶⁰Co, ⁶⁸Ge, ¹³⁷Cs, ²⁵²Cf with
- two deployment systems: Z-axis system & Guide tube system
- Natural sources like neutron capture on H/Gd or BiPo

We precisely evaluated detection efficiency, energy scale, uniformity and stability from the systems and/or sources

IBD candidates vs time

Same variation of IBD candidates in double detector phase