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Motivation

Kopp et al., JHEP 1305(2013)
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* Re-analysis of past reactor experiments, with improved flux
— ~ 6% deficit in the number of detected antineutrinos
— Supporting indication from source calibration runs in gallium detectors

* Could this be the hint of an additional sterile neutrino ?



The SolLid experiment at SCK*CEN

BR2 research re

I

SolLid detector modules

* Solid is a very short-baseline experiment, designed to resolve the
Reactor Antineutrino Anomaly
— Installed at the BR2 research reactor in SCK*CEN (Mol, Belgium)
— Long detector module that covers a wide baseline range ~5.5-10 m

* Measurement of the 23U flux and spectrum
— Help to understand the 5 MeV “bump” seen by Daya Bay, Double Chooz and RENO
— Demonstrate reactor antineutrino safeguards for non-proliferation



The SolLid collaboration

Universiteit
Antwerpen

SCK- CEN

=)

UNIVERSITEIT
GENT

Vrije
Universiteit
Brussel

6Ub0t@ ch

Bl University of =
BRISTOL UNIVERSITY OF
OXFORD

Imperial College

London

Virginia
Il
02

Tech



Challenges

Small oscillation effect (10%)
— Large statistics, good understanding of systematics

Requires compact reactor core (d <1 m)
— A few meters oscillation length

Cover a large baseline range (5.5 - 10 m)
— Good vertex and energy resolution

Control of background is the key
— Close proximity to a nuclear reactor
— Low overburden (almost on surface)



Detector concept

* Cubes are optically separated (wrapped in Tyvek)
* SLiF:ZnS(Ag) for neutron identification

* Light collected through optical fibers and silicon
photomultipliers (SiPMs require low-voltage)

e 5x5x5cm3PVT cubes
e  Non-flammable scintillator

SLiF:ZnS(Ag) Layer 250 um
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* Adjacent planes of cubes



Event topology in Solid

Inverse beta decay event Fast neutron event

~~ 350

Monte-Carlo A v Monte-Carlo

— High granularity allows for signal localization and thus enhances
significantly background rejection
— Fast neutron rejection possible through event topology



Detector development

NEMENIX, 2013

64 cubes totally
8 kg active mass

Proof of principle

* Validate neutron identification

*  Demonstrate prompt-delayed
signal selection

*  Background measurement



Detector development

SM1 prototype,
2014 -2015

NEMENIX, 2013

80 cm

64 cubes totally

9 pl 16 x 16 cub
8 kg active mass planes of 16 x 16 cubes

288 kg active mass

Proof of principle First large scale prototype
*  Validate neutron identification «  Demonstrate scalability and test
*  Demonstrate prompt-delayed production schedule

signal selection *  Probe background rejection

*  Background measurement *  Analysis tools, physics results



Detector development

NEMENIX, 2013

64 cubes totally
8 kg active mass

Proof of principle

Validate neutron identification
Demonstrate prompt-delayed
signal selection

Background measurement

SM1 prototype,
2014 -2015

80 cm

9 planes of 16 x 16 cubes
288 kg active mass

First large scale prototype

Demonstrate scalability and test
production schedule

Probe background rejection
Analysis tools, physics results
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Phase | detector, 2016
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50 planes of 16 x 16 cubes
1.6 tons active mass

Real scale system

Improved design
Implement neutron trigger

Perform high precision
measurements
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SM1 prototype

* 3000 cubes machined and assembled Plane under Assembled

tructi |
— Wrapped with Tyvek and carefully weighted construction * plane

— Number of protons determined with better
than 1 % accuracy

16x16 PVT
cubes array

e 16 x16 PVT cubes grouped
together to form a single plane

— Mechanical support with
aluminum frame

— HPDE to reduce neutron
HDPE LopE 9 planes totally, 288 kg

dissipation aframe W foecior bavs cover sheets 288 readout channels
80 x 80 x45 cm 11




Deployment at BR2

November 2014
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Data taking and calibration with muons

SM1 took data for several weeks
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Neutron identification

10° — AmBe Position 1.
Data — AmBe Position 2
1h — Co60
10° — Reactor On
Reactor Off

SolLid preliminary

N (Scaled to live time)

PID Parameter

Excellent neutron identification

— Tail-to-total algorithm using
information from both channels

Can distinguish a neutron in millions
of signals |

Position 1

SM1 at BR2

Position 2
—

Calibration runs with AmBe source
— AmBe is a fast neutron emitter
Study prompt-delayed coincidence

— Time-space correlation, neutron
efficiency, etc...

prompt to neutron capture time difference (AmBe source)
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Phase | detector

Construction phase has started

5 modules of 10 planes, 16 x 16 cubes

50 planes totally, 12800 cubes
Temperature controlled system

3200 readout channels, max 0.5 TB per day
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Phase | detector

Construction phase has started

Neutron detection efficiency

Additional LiF:ZnS sheets

— Increases °Li capture efficiency
from 51% to 66%

— Reduces capture time from
105 ps to 66 ps

New screens with improved
transparency

5 modules of 10 planes, 16 x 16 cubes

50 planes totally, 12800 cubes
Temperature controlled system

3200 readout channels, max 0.5 TB per day

Light yield and uniformity

e Four fiber readout

— 37 PA/MeV, 66% increase with
respect to SM1

— 7% variation of light yield across
the detector

4 6 8 10 °2
Average PA/cube = 37.2
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Neutron trigger

SM1 had a rather low neutron detection

efficiency of ~ 5%, due to high trigger Neutron (n) and electromagnetic (EM) signals
threshold (6.5 PA)
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Phase | detector is designed to have a —
neutron selection at the trigger level it

(implemented at the firmware level)
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Solid preliminary
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— Zero suppression threshold at 1.5 PA ~erzoeii
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We expect n detection efficiency of ~ 70% .



Detector calibration

In-situ calibration system
Off-site calibration system (CROSS)

(CALIPSO)

* Plane characterization and
commissioning

* |n-situ radioactive sources

. Cubet o lizati deployment
URE o cube equalization * Precise energy scale and
 Neutron and EM signals benchmark neutron detection efficiency

determination s



Ending themes

The SolLid experiment will make a very sensitive search forve
disappearance using a novel detector design

SM1 operation has been very successful
— Excellent EM/neutron identification
— Low background at BR2 has been confirmed
— Precise calibration with muons (cube equalization ~1.5%)

— Data analysis talk by Dan Saunders (4/08, Neutrino Physics session)
and poster by lanthe Michiels (6/08, Poster session)

Entered construction phase fro the 1.6 ton detector
— Funded by FWO, Hercules (BE), ERC (EU) and ANR (FR) grants

— Detector technology and construction poster by Celine Moortgat
(6/08, Poster session)

Detector commissioned and deployed in BR2 by early 2017
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