

SoLid: A compact detector for very short-baseline neutrino experiments

Leonidas N. Kalousis (VUB) for the SoLid collaboration

Motivation

Kopp et al., JHEP 1305(2013)

- Re-analysis of past reactor experiments, with improved flux
 - ~ 6% deficit in the number of detected antineutrinos
 - Supporting indication from source calibration runs in gallium detectors
- Could this be the hint of an additional sterile neutrino?

The SoLid experiment at SCK•CEN

- SoLid is a very short-baseline experiment, designed to resolve the Reactor Antineutrino Anomaly
 - Installed at the BR2 research reactor in SCK•CEN (Mol, Belgium)
 - Long detector module that covers a wide baseline range ~ 5.5 10 m
- Measurement of the ²³⁵U flux and spectrum
 - Help to understand the 5 MeV "bump" seen by Daya Bay, Double Chooz and RENO
 - Demonstrate reactor antineutrino safeguards for non-proliferation

The SoLid collaboration

Challenges

- Small oscillation effect (10%)
 - Large statistics, good understanding of systematics
- Requires compact reactor core (d < 1 m)
 - A few meters oscillation length
- Cover a large baseline range (5.5 10 m)
 - Good vertex and energy resolution
- Control of background is the key
 - Close proximity to a nuclear reactor
 - Low overburden (almost on surface)

Detector concept

- $5 \times 5 \times 5$ cm³ PVT cubes
- Non-flammable scintillator

Adjacent planes of cubes

- Cubes are optically separated (wrapped in Tyvek)
- 6LiF:ZnS(Ag) for neutron identification
- Light collected through optical fibers and silicon photomultipliers (SiPMs require low-voltage)

Squared BCF-91A fiber

Event topology in SoLid

- High granularity allows for signal localization and thus enhances significantly background rejection
- Fast neutron rejection possible through event topology

Detector development

NEMENIX, 2013

64 cubes totally 8 kg active mass

Proof of principle

- Validate neutron identification
- Demonstrate prompt-delayed signal selection
- Background measurement

Detector development

SM1 prototype, 2014 -2015

NEMENIX, 2013

64 cubes totally 8 kg active mass

9 planes of 16 × 16 cubes 288 kg active mass

Proof of principle

- Validate neutron identification
- Demonstrate prompt-delayed signal selection
- Background measurement

First large scale prototype

- Demonstrate scalability and test production schedule
- Probe background rejection
- Analysis tools, physics results

Detector development

NEMENIX, 2013

64 cubes totally 8 kg active mass

Proof of principle

- Validate neutron identification
- Demonstrate prompt-delayed signal selection
- Background measurement

SM1 prototype, 2014 -2015

9 planes of 16 × 16 cubes 288 kg active mass

First large scale prototype

- Demonstrate scalability and test production schedule
- Probe background rejection
- Analysis tools, physics results

Phase I detector, 2016

50 planes of 16 × 16 cubes 1.6 tons active mass

Real scale system

- Improved design
- Implement neutron trigger
- Perform high precision measurements

SM1 prototype

- 3000 cubes machined and assembled
 - Wrapped with Tyvek and carefully weighted
 - Number of protons determined with better than 1 % accuracy

Plane under construction

Assembled plane

- 16 × 16 PVT cubes grouped together to form a single plane
 - Mechanical support with aluminum frame
 - HPDE to reduce neutron dissipation

9 planes totally, 288 kg 288 readout channels 80 × 80 × 45 cm

Deployment at BR2

Data taking and calibration with muons

- SM1 took data for several weeks
 - 3 4 days reactor on
 - ~ 1 month reactor off
 - Calibration runs with ⁶⁰Co, AmBe and ²⁵²Cf sources
- Channel equalization (gains and attenuation) using crossing muons

Neutron identification

- Excellent neutron identification
 - Tail-to-total algorithm using information from both channels
- Can distinguish a neutron in millions of signals!

Position 1

- Calibration runs with AmBe source
 - AmBe is a fast neutron emitter
- Study prompt-delayed coincidence
 - Time-space correlation, neutron efficiency, etc...

Phase I detector

Construction phase has started

- 5 modules of 10 planes, 16 × 16 cubes
- 50 planes totally, 12800 cubes
- Temperature controlled system
- 3200 readout channels, max 0.5 TB per day

Phase I detector

Construction phase has started

Neutron detection efficiency

- Additional LiF:ZnS sheets
 - Increases ⁶Li capture efficiency from 51% to 66%
 - Reduces capture time from
 105 μs to 66 μs
- New screens with improved transparency

- 5 modules of 10 planes, 16 × 16 cubes
- 50 planes totally, 12800 cubes
- Temperature controlled system
- 3200 readout channels, max 0.5 TB per day

Light yield and uniformity

- Four fiber readout
 - 37 PA/MeV, 66% increase with respect to SM1
 - 7% variation of light yield across the detector

Neutron trigger

 SM1 had a rather low neutron detection efficiency of ~ 5%, due to high trigger threshold (6.5 PA)

- Phase I detector is designed to have a neutron selection at the trigger level (implemented at the firmware level)
 - Buffer time ± 500 μs and ± 2 planes around a neutron event
 - Zero suppression threshold at 1.5 PA
 - Reduces dramatically the amount of data
 - Retains high IBD efficiency
- We expect n detection efficiency of ~ 70%

Neutron (n) and electromagnetic (EM) signals

Detector calibration

Off-site calibration system (CALIPSO)

- Plane characterization and commissioning
- Cube to cube equalization
- Neutron and EM signals benchmark

In-situ calibration system (CROSS)

- In-situ radioactive sources deployment
- Precise energy scale and neutron detection efficiency determination

Ending themes

- The SoLid experiment will make a very sensitive search for ν_e disappearance using a novel detector design
- SM1 operation has been very successful
 - Excellent EM/neutron identification
 - Low background at BR2 has been confirmed
 - Precise calibration with muons (cube equalization ~1.5%)
 - Data analysis talk by Dan Saunders (4/08, Neutrino Physics session)
 and poster by Ianthe Michiels (6/08, Poster session)
- Entered construction phase fro the 1.6 ton detector
 - Funded by FWO, Hercules (BE), ERC (EU) and ANR (FR) grants
 - Detector technology and construction poster by Celine Moortgat (6/08, Poster session)
- Detector commissioned and deployed in BR2 by early 2017

SPARES