

Measurement of the *WZ* production cross section at 8 TeV and 13 TeV and limits on anomalous TGCs with the ATLAS detector

Christian Gütschow

University College London

ICHEP2016, Chicago, 05 August 2016

Overview

measurements of rare electroweak processes are a crucial test of the Standard Model in extreme regions of phase space

LUC

Signal characterisation

→ QCD-initiated WZ production with four electroweak couplings at leading order

 electroweak WZjj production with six electroweak couplings at leading order, including vector boson scattering diagrams

unitarisation restored through Higgs diagrams

ICHEP2016, Chicago, 05 August 2016

chris.g@cern.ch

Fiducial phase-space definition

- ightarrow $N_{\ell}=$ 3 with $|\eta^{\ell}|<$ 2.5
- \rightarrow Z-decay leptons: $p_{\rm T}^{\ell} > 15 \,{\rm GeV}$
- → W-decay lepton: $p_T^{\ell} > 20 \,\text{GeV}$
- → $|m_{\ell\ell} m_Z| < 10 \, \text{GeV}$
- → m^W_T > 30 GeV
- $\rightarrow \Delta R(\ell, \ell) > 0.3$ between the *W*-decay lepton and each of the *Z*-decay leptons
- $\rightarrow \Delta R(\ell, \ell) > 0.2$ between the Z-decay leptons

Process composition

- background processes with at least three prompt leptons estimated using dedicated Monte Carlo simulation
 - \rightarrow ZZ (~ 25 %, dominant), VVV, tZ, t $\bar{t}V$

8 TeV

Channel	eee	μee	$e\mu\mu$	μμμ	All
Data	406	483	539	663	2091
Total expected	336.7 ± 2.2	410.8 ± 2.4	469.1 ± 2.1	608.2 ± 3.5	1824.8 ± 7.0
WZ	255.7 ± 1.1	337.2 ± 1.0	367.0 ± 1.1	495.9 ± 2.3	1455.7 ± 5.5
Misid. leptons	43.7 ± 1.9	32.2 ± 2.1	50.2 ± 1.7	52.8 ± 2.6	178.9 ± 4.2
ZZ	25.9 ± 0.2	26.7 ± 0.3	36.1 ± 0.3	39.5 ± 0.3	128.2 ± 0.6
$t\bar{t} + V$	5.5 ± 0.2	6.7 ± 0.2	7.2 ± 0.3	9.1 ± 0.3	28.5 ± 0.5
tZ	4.2 ± 0.1	5.5 ± 0.2	6.0 ± 0.2	7.7 ± 0.2	23.3 ± 0.3
DPS	1.2 ± 0.1	1.9 ± 0.1	1.8 ± 0.1	2.3 ± 0.2	7.2 ± 0.3
VVV	0.5 ± 0.0	0.7 ± 0.0	0.8 ± 0.0	0.9 ± 0.0	3.0 ± 0.1

Phys. Rev. D 93 (2016) 092004

- background processes with at least one fake leptons estimated using data-driven technique
 - → dominant background (> 50 %) including Z+ jets, $Z\gamma$, $W\gamma$, $t\bar{t}$
 - fake lepton could be non-prompt, a misidentified jet or an electron from photon conversion

13 TeV (3.2 fb⁻¹ dataset)

Channel	eee	μee	$e\mu\mu$	μμμ	All
Data	98	122	166	183	569
Total Expected	102 ± 10	118 ± 9	126 ± 11	160 ± 12	$506\pm~38$
WZ	74 ± 6	96 ± 8	97 ± 8	129 ± 10	396 ± 32
$Z + j, Z\gamma$	16 ± 7	7 ± 5	14 ± 7	9 ± 5	45 ± 17
ZZ	6.7 ± 0.7	8.7 ± 1.0	8.5 ± 0.9	11.7 ± 1.2	36 ± 4
$t\bar{t} + V$	2.7 ± 0.4	3.2 ± 0.4	2.9 ± 0.4	3.4 ± 0.5	12.1 ± 1.6
$t\bar{t}, Wt, WW + j$	1.2 ± 0.8	2.0 ± 0.9	2.4 ± 0.9	3.6 ± 1.5	9.2 ± 3.1
tZ	1.28 ± 0.20	1.65 ± 0.26	1.63 ± 0.26	2.12 ± 0.34	6.7 ± 1.1
VVV	$0.24{\pm}0.04$	$0.29{\pm}0.05$	$0.27{\pm}0.04$	$0.34{\pm}0.05$	$1.14{\pm}0.18$

arXiv:1606.04017 [hep-ex]

(2417 events in 13.3 fb⁻¹ dataset)

Systematic uncertainties

dominant systematic uncertainties due to data-driven background estimation and electron identification efficiency

8 TeV

13 TeV

	eee	μee	$e\mu\mu$	$\mu\mu\mu$	combined
Source		Relati	ve unc	ertaint	ies [%]
e energy scale	0.8	0.4	0.4	0.0	0.3
e id. efficiency	2.9	1.8	1.0	0.0	1.0
μ momentum scale	0.0	0.1	0.1	0.1	0.1
μ id. efficiency	0.0	0.7	1.3	2.0	1.4
E ^{miss} and jets	0.3	0.2	0.2	0.1	0.3
Frigger	0.1	0.1	0.2	0.3	0.2
Pileup	0.3	0.2	0.2	0.1	0.2
Misid. leptons background	2.9	0.9	3.1	0.9	1.3
ZZ background	0.6	0.5	0.6	0.5	0.5
Other backgrounds	0.7	0.7	0.7	0.7	0.7
Uncorrelated	0.7	0.6	0.5	0.5	0.3
Total systematics	4.5	2.6	3.7	2.5	2.4
Luminosity	2.2	2.2	2.2	2.2	2.2
Statistics	6.2	5.4	5.3	4.7	2.7
Total	8.0	6.3	6.8	5.7	4.2

	eee	μee	$e\mu\mu$	$\mu\mu\mu$	combined		
Relative uncertainties [%]							
e energy scale	0.5	0.2	0.3	< 0.1	0.2		
e id. efficiency	1.4	1.1	0.6	_	0.7		
μ momentum scale	< 0.1	< 0.1	< 0.1	0.1	< 0.1		
μ id. efficiency	_	0.6	1.0	1.4	0.7		
E_{T}^{miss} and jets	0.3	0.4	0.8	0.7	0.6		
Trigger	< 0.1	0.1	0.1	0.2	0.1		
Pile-up	0.7	1.1	1.0	0.7	0.9		
Misid. lepton background	10	4.6	4.8	3.2	3.6		
ZZ background	1.0	0.7	0.6	0.7	0.7		
Other backgrounds	0.5	0.5	0.3	0.3	0.4		
Uncorrelated	2.2	1.3	1.4	1.7	0.8		
Total sys. uncertainty	11	5.1	5.3	4.1	4.1		
Luminosity	2.4	2.4	2.3	2.3	2.4		
Statistics	14	11	10	8.8	5.1		
Total	18	12	11	10	7.0		

Phys. Rev. D 93 (2016) 092004

arXiv:1606.04017 [hep-ex]

Detector-level comparisons

- Z-boson transverse momentum
- signal prediction from POWHEG (CT10) + PYTHIA8 (CTEQ6L1+AZNLO)
 - ♦ 8 TeV predictions scaled by 1.17, 13 TeV predictions normalised to NNLO calculation

Detector-level comparisons

- → W-boson transverse mass
- signal prediction from POWHEG (CT10) + PYTHIA8 (CTEQ6L1+AZNLO)
 - ♦ 8 TeV predictions scaled by 1.17, 13 TeV predictions normalised to NNLO calculation

Detector-level comparisons

- diboson transverse mass
- signal prediction from POWHEG (СТ10) + РҮТНІА8 (СТЕQ6L1+AZNLO)
 - ♦ 8 TeV predictions scaled by 1.17, 13 TeV predictions normalised to NNLO calculation

Fiducial cross sections

- → WZ cross section broken down by lepton flavours
- signal prediction from POWHEG (CT10) + PYTHIA8 (CTEQ6L1+AZNLO)

Phys. Rev. D 93 (2016) 092004

arXiv:1606.04017 [hep-ex]

Total cross sections

→ comparison to recent NNLO calculation by Grazzini et al. (# ARXIV:1604.08576)

Charge ratio measurements

- \rightarrow measured ratios of W^+Z -to- W^-Z production similar broken down by lepton flavours
- → signal prediction from POWHEG (CT10) + PYTHIA8 (CTEQ6L1+AZNLO)

Phys. Rev. D 93 (2016) 092004

arXiv:1606.04017 [hep-ex]

Differential cross sections

Z-boson transverse momentum

Phys. Rev. D 93 (2016) 092004

ATLAS-CONF-2016-043

ICHEP2016, Chicago, 05 August 2016

Differential cross sections

diboson transverse mass

ATLAS-CONF-2016-043

ICHEP2016, Chicago, 05 August 2016

Phys. Rev. D 93 (2016) 092004

Differential cross section

 high jet multiplicities described inadequately by NLO+PS approach (here Powheg+Pythia8)

 excellent agreement between data and multi-leg formalism observed (here Sherpa 2.1)

arXiv:1606.04017 [hep-ex]

Cross section limits on WZjj production

8 TeV

95% CL upper limit on $\sigma_{W^{\pm}Zjj\text{-}\mathrm{EW}\to\ell'\nu\ell\ell}^{\text{fid.}}$ [fb]					
	VBS only	VBS + tZj			
V	BS phase space	e			
Observed	0.63	0.67			
Expected	0.45	0.49			
$\pm 1\sigma$ Expected	[0.28; 0.62]	[0.33; 0.67]			
$\pm 2\sigma$ Expected	[0.08; 0.80]	[0.19; 0.84]			

 use 8 TeV data to put a cross section limit on electroweak WZjj production

- → also require at least two jets with $p_T > 30$ GeV, $|\eta| < 4.5$, $m_{jj} > 500$ GeV and $\Delta R(j, \ell) > 0.3$
- place limits with and without the tZj contribution

O

Phys. Rev. D 93 (2016) 092004

MEASUREMENTS OF THE WZ PRODUCTION CROSS SECTION CHRISTIAN GÜTSCHOW

Limits on anomalous triple gauge couplings

similar sensitivity between 8 and 13 TeV

 combine 8 and 13 TeV measurements to extract limits (no form factors applied)

improves existing limits by up to 20 %

ATLAS-CONF-2016-043

Dataset	Coupling	Expected	Observed
$13 { m TeV}$	$\Delta g_1^Z \\ \Delta \kappa_1^Z \\ \lambda^Z$	$\begin{matrix} [-0.017; \ 0.032] \\ [-0.18; \ 0.24] \\ [-0.015; \ 0.014] \end{matrix}$	$\begin{matrix} [-0.016; \ 0.036] \\ [-0.15; \ 0.26] \\ [-0.016; \ 0.015] \end{matrix}$
$8~{\rm and}~13~{\rm TeV}$	$\begin{array}{c} \Delta g_1^Z \\ \Delta \kappa_1^Z \\ \lambda^Z \end{array}$	$\begin{matrix} [-0.014; \ 0.029] \\ [-0.15; \ 0.21] \\ [-0.013; \ 0.012] \end{matrix}$	[-0.015; 0.030] [-0.13; 0.24] [-0.014; 0.013]

ATLAS-CONF-2016-043

ICHEP2016, Chicago, 05 August 2016

Limits on EFT coefficients

to allow for a direct comparison with limits extracted in WW measurement, interpret aTGC coupling parameters in terms of EFT coefficients:

$$\frac{c_{WWW}}{\Lambda^2} = \frac{2}{3g^2 m_W^2} \lambda_Z$$
$$\frac{c_W}{\Lambda^2} = \frac{2}{m_Z^2} \Delta g_1^Z$$
$$\frac{c_B}{\Lambda^2} = \frac{2\Delta g_1^Z}{\tan^2 \theta_W m_Z^2} - \frac{2\Delta \kappa_Z}{\sin^2 \theta_W m_Z^2}$$

Dataset	Coupling	Expected $[\text{TeV}^{-2}]$	Observed $[\text{TeV}^{-2}]$
$13 { m TeV}$	$c_W/\Lambda_{ m NP}^2 \ c_B/\Lambda_{ m NP}^2 \ c_{WWW}/\Lambda_{ m NP}^2$	[-4.1; 7.6] [-261; 193] [-3.6; 3.4]	[-3.8; 8.6] [-280; 163] [-3.9; 3.7]
$8~{\rm and}~13~{\rm TeV}$	$c_W/\Lambda_{ m NP}^2 \ c_B/\Lambda_{ m NP}^2 \ c_{WWW}/\Lambda_{ m NP}^2$	[-3.4; 6.9] [-221; 166] [-3.2; 3.0]	[-3.6; 7.3] [-253; 136] [-3.3; 3.2]

ATLAS-CONF-2016-043

Summary

- ATLAS have measured the WZ production cross section at 8 TeV and 13 TeV
 - → 20.3 fb⁻¹ of 2012 data at 8 TeV (Phys. Rev. D 93 (2016) 092004)
 - → 3.2 fb⁻¹ of 2015 data at 13 TeV (arXiv:1606.04017 [hep-ex])
 - → 13.3 fb⁻¹ of 2015+2016 data at 13 TeV (ATLAS-CONF-2016-043)

 \rightarrow first measurement of differential cross sections as a function of p_T^Z and m_T^{WZ} at 13 TeV

→ extracted limits on anomalous triple gauge couplings improve existing limits by up to 20 %

Backup

Fiducial cross sections

- → WZ cross section broken down by lepton flavours
- signal prediction from POWHEG (CT10) + PYTHIA8 (CTEQ6L1+AZNLO)

Phys. Rev. D 93 (2016) 092004

ATLAS-CONF-2016-043