Tree-level New Physics searches in Semileptonic B decays at Belle

Y. Sato

(KMI, Nagoya/IPNS, KEK)
On behalf of Belle collaboration
5th Aug. 2016 @ICHEP2016

Outline

- New physics searches in $B \to D^* \tau \nu$ decay.
 - 1. $\mathcal{R}(D^*)$ with semileptonic tag
 - Shown at Moriond 2016, submitted to PRD (arXiv:1607.07923)
 - Compatibility test in model-independent approach is newly done.
 - 2. $\mathcal{R}(D^*)$ and \mathcal{P}_{τ} with hadronic tag and τ hadronic decay

- Shown for the first time, preliminary
- First measurement of τ polarization in $B \to D^* \tau \nu$ decay.
- Both analyses are based on complete $\Upsilon(4S)$ Belle data set of 711 fb⁻¹.

Physics Motivation

$B \rightarrow D^* \tau \nu \text{ decay}$

• New physics could change ${\cal B}$ and ${m au}$ polarization $({\cal P}_{m au})$.

$$- \mathcal{R}(\mathbf{D}^*) \equiv \frac{\mathcal{B}(B \to D^* \mathbf{\tau} \nu)}{\mathcal{B}(B \to D^* \boldsymbol{\ell} \nu)} = \frac{\text{signal}}{\text{normalization}} \ (\ell = e, \mu)$$

- Several uncertainties cancel in ratio.
- $\mathcal{R}(D^*)^{\mathrm{SM}} = 0.252 \pm 0.003$ S. Fajfer, J.F. Kmaenik, I. Nisandzic PRD 85, 094025 (2012)
- Belle, BaBar, and LHCb measured.
- $-~{m {\cal P}}_{m au}^{
 m SM} = -0.497 \pm 0.014$ M. Tanaka, R. Watanabe PRD 87, 034028 (2013)
 - Not measured yet.

Choice of τ decay

- Leptonic decay ($au
 ightarrow \ell
 u
 u$)
 - Used in all $\mathcal{R}(D^*)$ measurements so far.
 - Advantageous for bkg suppression.
- Two-body hadronic decay (au o h
 u)
 - Advantageous for \mathcal{P}_{τ} measurement.

Tagging Techniques

Hadronic/Semileptonic(SL) tag

• Unique and powerful tools at B factories to analysis final states with multiple ν .

 $\cos \theta_{R-D^{(*)}l}$

$\mathcal{R}(D^*)$ with Semileptonic Tag

- "Clean" channels are only used to get high purity.
 - leptonic τ decay : τ → ℓ νν
 - $B^0 \bar{B}^0 \to (D^{*-} \ell^+)(D^{*+} \ell^-)$ channel
- $\mathcal{R}(D^*) = \frac{\text{signal}}{\text{normalization}}$
- Signal and normalization are tagged by double semileptonic tag.
- Candidates with the lower value of $\cos \theta_{B-D^*\ell}$ are assigned as $B_{\rm sig}$.

Result of $\mathcal{R}(D^*)$ Measurement

 $\mathcal{R}(\mathbf{D}^*)$ with SL-tag

- Two-dimensional fit:
 - 1. \mathcal{O}_{NB} (Neural network output, mainly based on $\cos \theta_{B-D^*\ell}^{\mathrm{low}}$)
 - 2. E_{ECL} (sum of residual energy in calorimeter)

- $\mathcal{R}(D^*) = 0.302 \pm 0.030(\text{stat}) \pm 0.011(\text{syst})$
 - -13.8σ significance including syst. error.
 - 1.6 σ larger than SM prediction
 - Consistent with other measurements.

Compatibility Test in Model Independent Approach

Examine the impact of each operators in kinematics.

 $\mathcal{R}(D^*)$ with SL-tag

Effective Hamiltonian for $b \rightarrow c \tau \nu_{\tau}$

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \begin{bmatrix} \mathbf{SM} & \mathbf{NP} \\ \mathcal{O}_{V_1} + \sum_{X=S_1, S_2, V_1, V_2, T} C_X \mathcal{O}_X \end{bmatrix}$$

Five operators

$$\mathcal{O}_{S_1} = (\bar{c}_L b_R)(\bar{\tau}_R \nu_{\tau L}),$$
 2HDM (type-II)
 $\mathcal{O}_{S_2} = (\bar{c}_R b_L)(\bar{\tau}_R \nu_{\tau L}),$ 2HDM
 $\mathcal{O}_{V_1} = (\bar{c}_L \gamma^{\mu} b_L)(\bar{\tau}_L \gamma_{\mu} \nu_{\tau L}),$ SM
 $\mathcal{O}_{V_2} = (\bar{c}_R \gamma^{\mu} b_R)(\bar{\tau}_L \gamma_{\mu} \nu_{\tau L}),$ RH-current
 $\mathcal{O}_T = (\bar{c}_R \sigma^{\mu \nu} b_L)(\bar{\tau}_R \sigma_{\mu \nu} \nu_{\tau L}),$ Tensor

Two leptoquark(LQ) models are also studied.

-
$$C_{S_2} = +7.8C_T$$
: $(SU(3)_C, SU(2)_L)_Y = (3,2)_{7/6} \rightarrow R_2$ -type LQ

- $C_{S_2} = -7.8C_T$: $(SU(3)_C, SU(2)_L)_Y = (3^*, 2)_{1/3} \rightarrow S_1$ -type LQ (assuming no additional \mathcal{O}_{V_1} contribution)

Favored regions and p-values for each scenarios are summarized in backup slide.

$\mathcal{R}(D^*)$ and $\mathcal{P}_{ au}$ with Hadronic Tag

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} (1 + \alpha \cdot \mathcal{P}_{\tau} \cos\theta_{\text{hel}})$$

- Tau helicity angle $(\cos \theta_{\rm hel})$ is sensitive to \mathcal{P}_{τ} .
 - 4-momentum of $B_{\rm sig}$ is determined by had-tag.
 - Two-body hadronic τ decays are used.

•
$$\tau \to h \nu$$
, $h = \pi^-, \rho^- (\to \pi^- \pi^0)$

•
$$\alpha = \begin{cases} 1 & \text{for } \tau \to \pi^- \nu \text{ (pseudo scalar meson)} \\ 0.45 & \text{for } \tau \to \rho^- \nu \text{ (vector meson)} \end{cases}$$

$$\frac{m_\tau^2 - 2m_V^2}{m_\tau^2 + 2m_V^2}$$

- Both B^0/B^+ channels are used.
 - $-D^{*+} \to D^0 \pi^+ / D^+ \pi^0, D^{*0} \to D^0 \pi^0 / D^0 \gamma$
- M_{miss}^2 is used for determination of $B \to D^* \ell \nu$ (denominator in $\mathcal{R}(\mathbf{D}^*)$)
- Correct $\mathcal{P}^{\text{raw}}_{\tau}$ to $\mathcal{P}^{\text{true}}_{\tau}$ in fitter, considering acceptance effect.
 - $\cos \theta_{\rm hel} < 0.8$ for $(\tau \to \pi^- \nu)$

Fit for $\mathcal{R}(D^*)$ and \mathcal{P}_{τ} Measurements

• Simultaneous fitting of eight $E_{\rm ECL}$ distributions:

- $\mathcal{R}(\mathbf{D}^*)$ and $\mathcal{P}_{ au}$ with Had-tag
- $(B^0, B^+) \otimes (\pi \nu, \rho \nu) \otimes (\text{Forward/backward } \cos \theta_{\text{hel}})$

- Dominant Bkg (except fake D^* , which can be determined by sideband) arises from hadronic B decay (e.g. $B \to D^*$ n π).
 - Calibrated by requiring additional particles and reconstructing these events.
 - Yield of hadronic B decay is floated.

Result of $\mathcal{R}(D^*)$ and \mathcal{P}_{τ} Measurements

 $\mathcal{R}(\pmb{D}^*)$ and $\mathcal{P}_{\pmb{ au}}$ with Had-tag

- $\mathcal{R}(D^*) = 0.276 \pm 0.034(\text{stat})^{+0.029}_{-0.026}(\text{syst})$
- **Preliminary**
- 7.1σ significance including systematic uncertainty.
- Consistent with SM prediction and other measurements.
- $\mathcal{P}_{\tau} = -0.44 \pm 0.47 (\text{stat})^{+0.20}_{-0.17} (\text{syst})$

Preliminary

- First $\mathcal{P}_{ au}$ measurements!
- Consistent with SM prediction (-0.497 ± 0.014) within uncertainty.
- Systematics arises mainly from hadronic B bkg, MC statistics.

Combined Plots

- Correlation of systematic uncertainties about semileptonic decay are considered.
 - Assumption : large correlation in measurements of the same observable and null correlation between $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$.

 \rightarrow Precision of $\mathcal{R}(D^*)$ is improved by combining three Belle results.

Comparison among experiments

→ Belle average is slightly smaller than BaBar/LHCb results, but still larger than SM prediction.

Summary

- $B \to D^* \tau \nu$ decay is sensitive to several new physics scenarios.
- Belle continues to contribute to $B \to D^* \tau \nu$ decay actively.

$$-\mathcal{R}(D^*) = 0.302 \pm 0.030 (\text{stat}) \pm 0.011 (\text{syst})$$
 Submitted to PRD (arXiv:1607.07923)

• First measurement of $\mathcal{R}(D^*)$ using semileptonic tag.

-
$$\mathcal{R}(D^*) = 0.276 \pm 0.034(\text{stat})^{+0.029}_{-0.026}(\text{syst})$$
 Preliminary
- $\mathcal{P}_{\tau} = -0.44 \pm 0.47(\text{stat})^{+0.20}_{-0.17}(\text{syst})$

• First measurement of τ polarization in $B \to D^* \tau \nu$ decay.

• More analyses about $b \to c\tau\nu$ are ongoing at Belle. Stay tuned.

Backup

Belle Experiment

- KEKB accelerator and Belle detector at Tsukuba, Japan.
 - Asymmetric e^+e^- energy to boost B mesons
 - Data taking for 1999-2010
 - Good particle ID capability
 - $(p, \pi^{\pm}, K^{\pm}, \gamma, e, \mu, K_L^0)$
 - Good momentum resolution

$$\bullet \quad \frac{\sigma_{P_t}}{P_t} = 0.19P_t \oplus \frac{0.30}{\beta} \%$$

Signal and Background

 $\mathcal{R}(\mathbf{\textit{D}}^*)$ with SL-tag

Same background sources as analysis with hadronic tagging.

Background

- 2. $B \rightarrow D^{**} \ell \nu$
- One of the dominant systematic source
- Mainly 2 neutrinos + more than one pion in final state.
- 3. Others
- $B \to X_c D^*$, combinatorial (fake $D^{(*)}$) background, continuum background,
- → Separation of signal and background using information on missing particles.

Background Separation

 $\mathcal{R}(D^*)$ with SL-tag

- Separate signal from normalizations using NeuroBayes.
 - Signals : $B_{\text{sig}}B_{\text{tag}} \rightarrow (D^*\tau \nu)_{\text{sig}}(D^*\ell \nu)_{\text{tag}}$
 - Normalizations: $B_{\text{sig}}B_{\text{tag}} \rightarrow (D^*\ell \nu)_{\text{sig}}(D^*\ell \nu)_{\text{tag}}$
- Three input for NeuroBayes.

Systematic Uncertainty and Prospect for Belle II

	\mathcal{R}	$(D^*) \ [\%]$	\mathcal{R}	(D^*) with SL-tag
Sources	$\ell^{\rm sig} = e, \mu$	$\ell^{\rm sig} = e$	$\ell^{\rm sig} = \mu$	_
MC statistics for PDF shape	2.2%	2.5%	3.9%	\Rightarrow
PDF shape of the normalization	$^{+1.1}_{-0.0}\%$	$^{+2.1}_{-0.0}\%$	$^{+2.8}_{-0.0}\%$	\Rightarrow
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	+1.0%	+0.7 %	$\begin{vmatrix} +2.2 \\ -3.3 \end{vmatrix}$ %	☆
PDF shape and yields of fake $D^{(*)}$	1.4%	1.6%	1.6%	(☆)
PDF shape and yields of $B \to X_c D^*$	1.1%	1.2%	1.1%	\Rightarrow
Reconstruction efficiency ratio $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$	1.2%	1.5%	1.9%	☆
Modeling of semileptonic decay	0.2%	0.2%	0.3%	
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2%	0.2%	0.2%	
Total systematic uncertainties	$^{+3.4}_{-3.5}\%$	$^{+4.1}_{-3.7}\%$	+5.9 %	_

- Current statistical uncertainty ~ 10%.
 - 3.8 % at 5 ab⁻¹
 - 1.2 % at 50 ab⁻¹
- We must reduce systematic uncertainty at Belle II.
 - ☆ Systematic uncertainties related to limited amount of MC samples
 - \precsim Need to understand $B \to D^{**} \ell \nu$ and $B \to X_c D^*$ background
 - ☆ Difference between data and MC is conservatively assigned as systematic uncertainty in this estimation.

Efficiency Variation

 $\mathcal{R}(\textbf{\textit{D}}^*)$ with SL-tag

Measured $\mathcal{R}(D^*)$

 $\mathcal{R}(\textbf{\textit{D}}^*)$ with SL-tag

Kinematic Distributions

 $\mathcal{R}(\mathbf{\textit{D}}^*)$ with SL-tag

Kinematic Distributions

 $\mathcal{R}(\mathbf{\textit{D}}^*)$ with SL-tag

Summary Table of Compatibility Tests

 $\mathcal{R}(\mathbf{D}^*)$ with SL-tag

Models or operators	Parameters	Allowed regions (68% C.L.)
$egin{array}{c} \mathcal{O}_{S_1} \ \mathcal{O}_{S_2} \ \mathcal{O}_{V_1} \ \mathcal{O}_{V_2} \ \mathcal{O}_{T} \end{array}$	C_{S_1} C_{S_2} C_{V_1} C_{V_2} C_{T}	
		$\begin{bmatrix} -0.05, -0.01 \end{bmatrix}, \begin{bmatrix} +0.34, +0.38 \end{bmatrix}$ $\begin{bmatrix} -0.07, -0.01 \end{bmatrix}, \begin{bmatrix} +0.22, +0.28 \end{bmatrix}$

		p values [%]	
Model or operator	Parameter	p_{D^*}	p_ℓ
SM		37.6	25.8
Type-II 2HDM	$\frac{\tan \beta}{m_{H^+}} = 0.7 \text{ GeV}^{-1}$	37.9	22.5
\mathcal{O}_{V_2}	$C_{V_2} = +1.88$	24.1	18.6
\mathcal{O}_T	$C_T = +0.36$	0.9	19.2
R_2 -type leptoquark model	$C_T = +0.36$	1.4	16.2
S_1 -type leptoquark model	$C_T = +0.26$	1.1	15.4

 $\mathcal{R}(\pmb{D}^*)$ and $\mathcal{P}_{\pmb{ au}}$ with Had-tag

 ${\cal R}({\it D}^*)$ and ${\cal P}_{ au}$ with Had-tag

- $\cos \theta_{\rm hel} < 0.8$ in $\tau \to \pi \nu$ channel to mitigate $B \to D^* \ell \nu$.
- Correlation between $\cos \theta_{\rm hel}$ and $M_{\rm miss}^2$.

Systematic Uncertainty

 ${\cal R}({m D}^*)$ and ${\cal P}_{ au}$ with Had-tag

Source	$R(D^*)$	P_{τ}			
Hadronic B composition	+7.8% -6.9%	$^{+0.14}_{-0.11}$			
MC statistics for each PDF shape	$^{+3.5\%}_{-2.8\%}$	$^{+0.13}_{-0.11}$			
Fake D^* PDF shape	3.0%	0.010			
Fake D^* yield	1.7%	0.016			
$\bar{B} o D^{**} \ell^- \bar{\nu}_\ell$	2.1%	0.051			
$\bar{B} \to D^{**} \tau^- \bar{\nu}_\tau$	1.1%	0.003			
$\bar{B} \to D^* \ell^- \bar{\nu}_\ell$	2.4%	0.008			
τ daughter and ℓ^- efficiency	2.1%	0.018			
MC statistics for efficiency calculation	1.0%	0.018			
EvtGen decay model	$^{+0.8\%}_{-0.0\%}$	$^{+0.016}_{-0.000}$			
Fit bias	0.3%	0.008			
$\mathcal{B}(\tau^-\to\pi^-\nu_\tau)$ and $\mathcal{B}(\tau^-\to\rho^-\nu_\tau)$	0.3%	0.002			
P_{τ} correction function	0.1%	0.018			
Common sources .					
Tagging efficiency correction	1.4%	0.014			
D^* reconstruction	1.3%	0.007			
${\cal D}$ sub-decay branching fractions	0.7%	0.005			
Number of $B\bar{B}$	0.4%	0.005			
Total systematic uncertainties	+10.4% -9.5%	$^{+0.20}_{-0.17}$			

HFAG plot

