

# Top quark physics at FCC-ee

#### Freya Blekman

Interuniversity Institute for High Energies, Vrije Universiteit Brussel, Belgium

for FCC-ee project



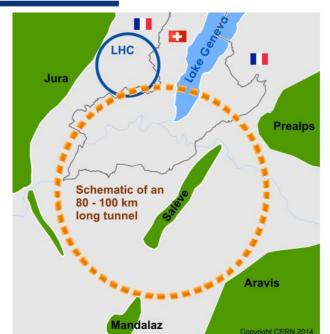
# 38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO



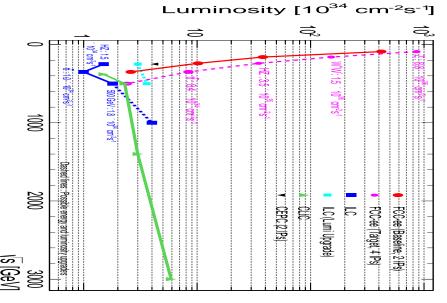
# **Outline**

- The FCC-ee collider expected to produce large, clean top quark pair sample
- Top quark mass and width important parameters SM and contribution loops
- Probing electroweak couplings ttZ and tty with unprecedented precision
- FCC-ee can pin down role of the top quark in physics beyond the Standard Model, also at higher scales:
  - tested by measuring Flavour Changing Neutral Currents




## FCC-ee: Introduction

- High-luminosity ee circular collider proposed in new 80-100 km tunnel near CERN
- Flexible centre-of-mass-energy from 90 to 400 GeV
- Schedule (and physics) complementary and in synergy with FCC-hh (pp @ 100 TeV)
- Explore energy scales to at least10 TeV
  - With precision measurements, 20-50 fold improvement on many SM parameters such as
    - $m_Z m_W m_{top} sin^2 \theta_W^{eff} R_B$ ,  $\alpha_{QED} \alpha_S$ , top and Higgs couplings
- Potential to directly or indirectly discover BSM physics
  - Understand BSM through quantum effects in loops
  - DM as invisible decay of H as Higgs factory
  - FCNC in Z and ttbar, flavour physics


04/Aug/2016

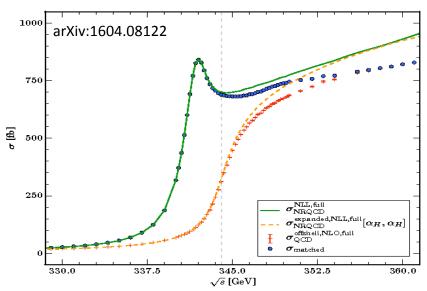


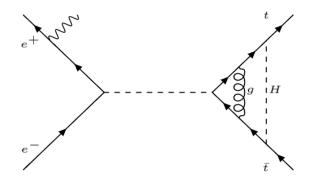


# Top physics at the FCC-ee

- The strength of the FCC-ee program:
  - span several centre-of-mass energies: from Tera-Z to 350 GeV
  - Using separate e+ and e- storage rings and target β\*γ ~1-2 mm means high luminosity at all energies
- Where/when does top physics come in the program?




- @350 GeV and just above threshold @370 GeV:
  - cross section ttbar: ~0.5 pb
  - dedicated run at/around 2m<sub>top</sub> 'Mega-Top'
  - 2  $ab^{-1} = 1M$  top pairs
    - with 4 IP: 0.5 year/IP (arxiv:1601.06640)
  - Dedicated run at 370 GeV for top electroweak couplings
- Single top quark sample: byproduct of 240 GeV run

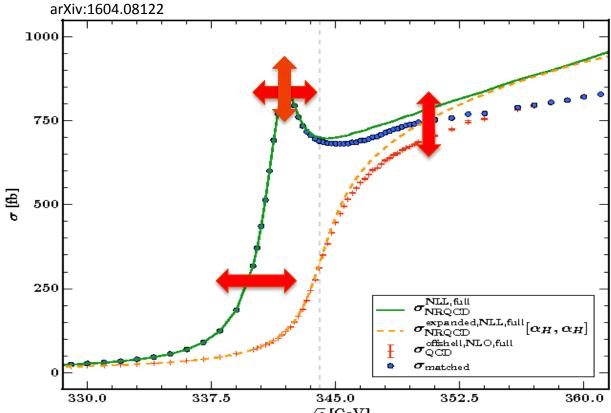

• at H+Z mass

See: arXiv:1308.6176
Physics meetings public:

https://indico.cern.ch/category/5259

# merit of m<sub>top</sub> threshold scan



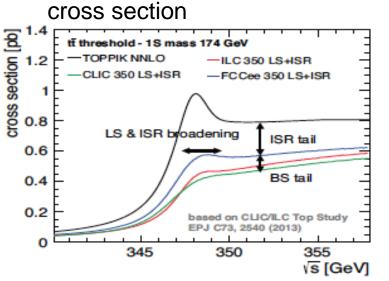


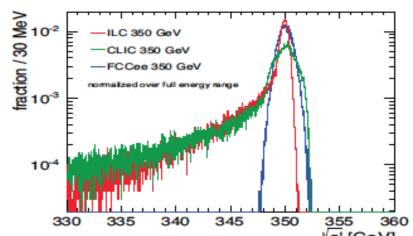

At lepton colliders, measurement of photons from ISR can be used to scan cross section vs centre-of-mass

- FCC-ee will measure α<sub>s</sub> with unprecedented precision at Z pole and WW threshold
- Cross section shape depends strongly on top quark mass and width, α<sub>s</sub> and Y<sub>t</sub>
- Top mass and width can be measured directly with an accurate top cross section threshold scan
  - Improved α<sub>s</sub> drastically improves correlations m<sub>t</sub>, Γ<sub>t</sub> and Y<sub>t</sub>



# m<sub>top</sub> threshold scan



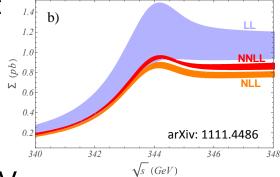


- Threshold shape depends strong on  $m_{top}$  and  $\Gamma_{top}$  so indirectly  $V_{tb}$
- Size of resonance behavior at and above threshold can be used to indirectly constrain Y<sub>top</sub>



# Top mass and threshold scan

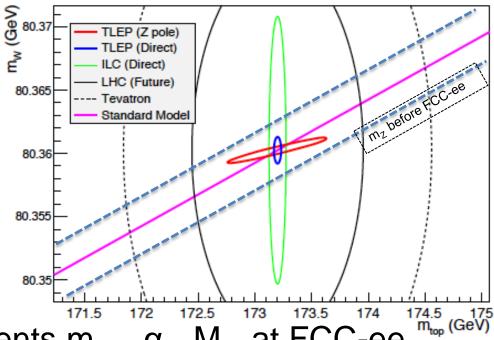
- The threshold shape is affected by ISR and luminosity profile
  - Width of turn-on affected by width luminosity peak
  - Possibility to shift below threshold energy means reduction in effective






- The FCC-ee has very steep luminosity profile, enhancing size of top sample and knowledge of centre-of-mass
  - With 100 fb-1 and a ILD/CLICstyle detector FCC-ee can measure top quark mass with 16 MeV statistical accuracy!




# Uncertainties on m<sub>top</sub>

- Uncertainty due to α<sub>S</sub>:
  - $\Delta m_{top} = 2.7 \text{ MeV} \times (\Delta \alpha_s/0.0001) \rightarrow 5.4 \text{ MeV}$
  - Input measured (at FCC-ee) with precision of Δα<sub>s</sub> < 0.0002 using W/Z boson hadronic branching fraction</li>
    - See talk Mario Antonelli at ICHEP2016
- Theory uncertainty:
  - Description shape e<sup>+</sup>e<sup>-</sup> to bWbW calculated at NNLL
  - Most important NNLL dependence
    - 1S-MSbar scheme top mass
  - Recent developmenst:
    - Uncertainty m<sub>top</sub> 23 MeV (parton shower level)
- Experimental (statistics) uncertainty 8-14 MeV depending on 1D or 2D fit
  - 10 MeV stat uncertainty m<sub>top</sub> within reach if theory improvement continues





#### Prospectives EWK t-W fits after FCC-ee

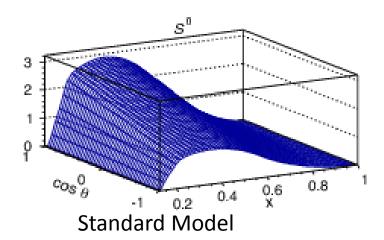


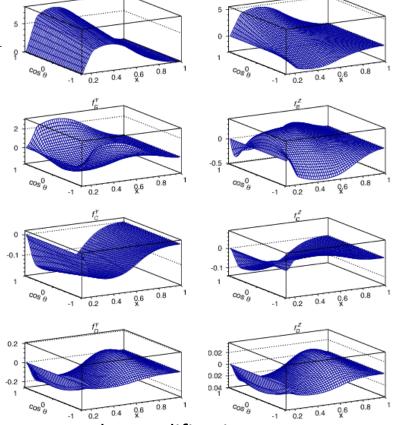
- Improvements m<sub>top</sub>, α<sub>S</sub>, M<sub>W</sub> at FCC-ee m<sub>top</sub> (Ge)
  - Would improve understanding consistency SM in top-W-H radiative corrections
- Standard Model line uncertainty dominated by Z boson mass error
  - Without FCC-ee it's 2.2 MeV!



# Electroweak couplings to top

- ttZ, tty couplings can be enhanced in extra dimensions and (particularly) composite Higgs models
  - Directly probed as production process FCC-ee
- Use lepton energy and angular distributions top decay to disentangle ttZ from ttγ in I+jets
  - Large luminosity more than compensates for lack beam longitudinal polarisation
- Sensitivity investigated in optimal observable analysis in arXiv:1503.01325 using form factor approach:


$$\underline{\Gamma_{ttv}^{\mu}} = \frac{g}{2} \left[ \gamma^{\mu} \left\{ (A_v + \delta A_v) - \gamma_5 (B_v + \delta B_v) \right\} + \frac{(p_t - p_{\bar{t}})^{\mu}}{2m_t} \left( \delta C_v - \delta D_v \gamma_5 \right) \right]$$

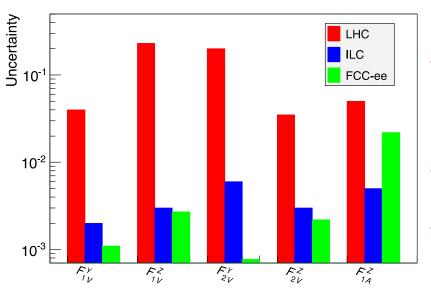


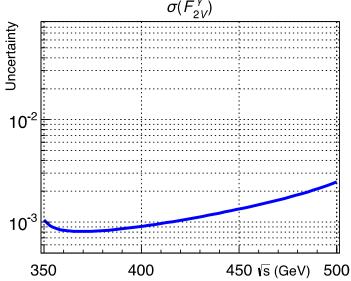

# Electroweak couplings to top

$$\Gamma_{ttv}^{\mu} = \frac{g}{2} \left[ \gamma^{\mu} \left\{ (A_v + \delta A_v) - \gamma_5 (B_v + \delta B_v) \right\} + \frac{(p_t - p_{\bar{t}})^{\mu}}{2m_t} \left( \delta C_v - \delta D_v \gamma_5 \right) \right]$$

- Each contributes differently to doubledifferential cross section
  - Lepton angle ( $\cos \theta$ )
  - x (reduced lepton energy)  $x = \frac{2E_{\ell}}{m_t} \sqrt{\frac{1-\beta}{1+\beta}}$
- Sum contributions fitted to data  $SM+\delta A_{Z/v}+\delta B_{Z/v}$






Reference: arXiv: 1503.01325

# Electroweak couplings to top

- Fit includes conservative assumptions detector performance such as b-tagging, lepton identification and angular/momentum resolution
- Expected precision of order 10<sup>-2</sup> to 10<sup>-3</sup>

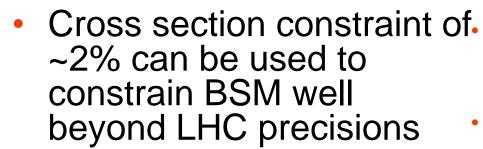




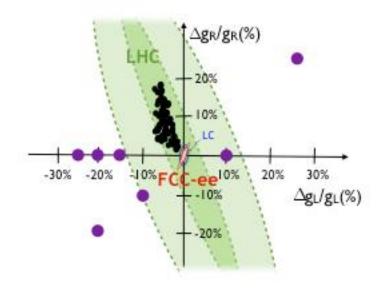
- Expected uncertainty on bounds ttZ/ttγ couplings dominated by theory uncertainty on prediction mechanism
- Optimal centre-of-mass energy is 365-370 GeV
  - Also confirmed by full analysis using Whizard and assumed FCC-ee detector performance



Reference: arXiv: 1503.01325


12

# Constraining BSM with Z/y to ttbar


- Precision measurement has great potential to constrain BSM
  - A<sub>Z/y</sub> and B<sub>Z/y</sub> parameters can be interpreted as g<sub>R</sub> and g<sub>L</sub>

$$g_L = \frac{g}{2}(A_z + B_z)$$

$$g_R = \frac{g}{2}(A_z - B_z)$$



in this case Composite Higgs models



Note: 2% uncertainty cross section depends on controlling large QCD uncertainties near threshold!

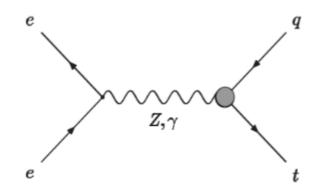
- Currently theory uncertainty at 370 GeV is about 3-4%
  - Larger at 350 GeV
  - We are not far from 2% needed

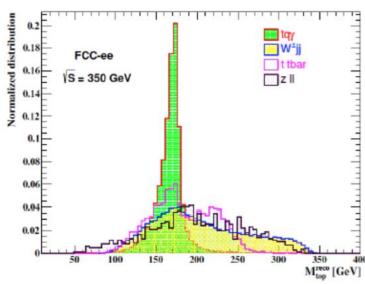


### Flavour Changing Neutral Currents

- FCNC are one of the best handles on constraining SM/indirectly discovering BSM in the top sector
- Almost all popular BSM extensions predict increased rare decays of the top quark

| Process                 | SM                  | 2HDM(FV)           | 2HDM(FC)        | MSSM           | RPV            | RS              |
|-------------------------|---------------------|--------------------|-----------------|----------------|----------------|-----------------|
| t 	o Zu                 | $7 \times 10^{-17}$ | _                  | _               | $\leq 10^{-7}$ | $\leq 10^{-6}$ | _               |
| $t\to Zc$               | $1\times 10^{-14}$  | $\leq 10^{-6}$     | $\leq 10^{-10}$ | $\leq 10^{-7}$ | $\leq 10^{-6}$ | $\leq 10^{-5}$  |
| $t \to gu$              | $4\times 10^{-14}$  | _                  | _               | $\leq 10^{-7}$ | $\leq 10^{-6}$ | _               |
| $t \to gc$              | $5\times 10^{-12}$  | $\leq 10^{-4}$     | $\leq 10^{-8}$  | $\leq 10^{-7}$ | $\leq 10^{-6}$ | $\leq 10^{-10}$ |
| $t \to \gamma u$        | $4\times10^{-16}$   | _                  | _               | $\leq 10^{-8}$ | $\leq 10^{-9}$ | _               |
| $t \to \gamma c$        | $5\times 10^{-14}$  | $\leq 10^{-7}$     | $\leq 10^{-9}$  | $\leq 10^{-8}$ | $\leq 10^{-9}$ | $\leq 10^{-9}$  |
| $t \to hu$              | $2\times 10^{-17}$  | $6 \times 10^{-6}$ | _               | $\leq 10^{-5}$ | $\leq 10^{-9}$ | _               |
| $\underbrace{t \to hc}$ | $3\times10^{-15}$   | $2 \times 10^{-3}$ | $\leq 10^{-5}$  | $\leq 10^{-5}$ | $\leq 10^{-9}$ | $\leq 10^{-4}$  |





arXiv:1311.2028

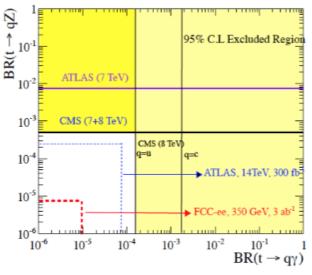
#### Large and pure 'MegaTop' sample good for FCNC

As usual in FCNC analyses, taking an effective Lagrangean approach

- FCNC tqZ and tqγ: top quark+light quark jet final states
  - Due to lower total mass, already sensitivity at 240 GeV FCC-ee run (ee --> HZ)
  - Can be analysed in full hadronic and semileptonic top decays






Clear distinction between toy and ttbar in semileptonic final state



#### Sensitivity FCNC: 95% CL exclusion limits

### Limits in all-hadronic and lepton+jets channel compatible

| Sqrt(s) and lumi                              | 240 GeV<br>100 fb-1 | 240 GeV<br>10 ab-1 | 350 GeV<br>3 ab-1 |
|-----------------------------------------------|---------------------|--------------------|-------------------|
| BR(t->qγ)<br>all hadronic                     | 1.43 x 10-4         | 3.17 x 10-5        |                   |
| BR(t->qγ)<br>semileptonic                     | -                   | 2.01 x 10-5        | 9.86 x 10-6       |
| BR(t->qZ) $(\sigma_{\mu\nu})$<br>All hadronic | 1.86 x 10-4         | 4.12 x 10-5        |                   |
| BR(t->qZ) $(\sigma_{\mu\nu})$ semileptonic    | -                   | 2.44 x 10-5        | 1.41 x 10-6       |
| BR(t->qZ) $(\gamma_{\mu\nu})$<br>All hadronic | 3.78 x 10-4         | 8.22 x 10-5        |                   |
| BR(t->qZ) $(\gamma_{\mu\nu})$ semileptonic    | -                   | 5.02 x 10-5        | 5.27 x 10-5       |



FCC-ee expected to substantially improve beyond HL-LHC



# <u>Summary</u>

- FCC-ee great machine for precision measurements in the top quark sector
  - Very high luminosity up to 2 ab<sup>-1</sup> (baseline: 1 ab<sup>-1</sup>)
    - with 0.5 pb ttbar cross section
  - Different center-of-mass-energies (Z, WW,ZH, ttbar) possible
  - Properties and indirect BSM constraints competitive
  - Nb: FCC-ee precision can probe scales up to 100 TeV
    - not discussed here, see M. Antonelli's talk
  - Most measurements top sector at this point limited by theory
- FCC-ee can measure top quark mass with threshold scan:
  - Statistical uncertainty: 10 MeV
  - Total uncertainty dominated by theoretical input
- Top couplings ttZ and ttγ can be measured to ~ 1% accuracy
  - And substantial BSM sensitivity for Composite Higgs-like models
- Limits FCNC of order 10<sup>-5</sup> 10<sup>-6</sup>



17

# <u>Outlook</u>

- Top physics = Precision physics with BSM sensitivity at FCC-ee
  - Many opportunities for interesting short (and not-so-short) studies for the FCC technical design report due 2018
  - Ask me after the talk, we are always happy to train interested physicists!

# Thank you for your attention!

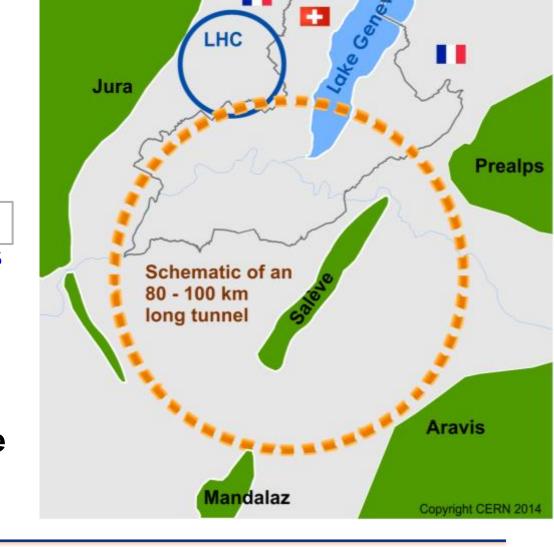


# **Backup**



# Potential physics studies

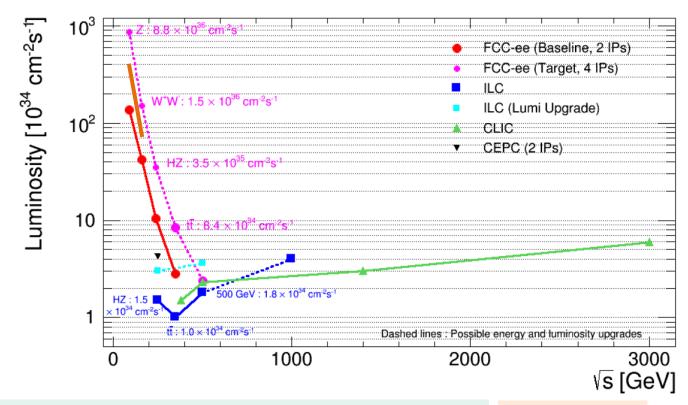
- FCC-ee at 2m<sub>top</sub> 350 GeV:
- top mass measurement around threshold @350GeV
- intertwined with mass but dedicated measurement could improve sensitivity:
  - top Y<sub>t</sub> measurement
  - top width
- Rare decays
- FCNC
- Anomalous couplings
- Forward-backward asymmetry


- **Single top** physics @240GeV:
  - higher integrated luminosity will really help here
  - direct measurement  $V_{tb}$
  - Anomalous couplings FCNC
    - also @240 GeV
- Interference ttbar/WbWb and single top production is open topic
  - needs further exploration and interaction with pheno group
- The case for 500 GeV run
  - direct extraction of Yt from ttH
  - any other BSM signal to look for?



## FFC-ee -> FCC-hh

# Forming an international collaboration to study:


- pp-collider (FCC-hh)
   → defining infrastructure requirements
  - ~16 T  $\Rightarrow$  100 TeV pp in 100 km
- e<sup>+</sup>e<sup>-</sup> collider (FCC-ee) as potential first step ECM=90-400 GeV
- p-e (FCC-he) option
- 80-100 km infrastructure in Geneva area





Provide highest possible luminosity from Z to tt by exploiting b-factory technologies:

- separate e- and e+ storage rings
- very strong focussing:  $\beta^*y = 1 2$  mm (target, baseline -- work in progress!)
- top-up injection
- crab-waist crossing



#### **Event statistics:**

Z peak
WW threshold
ZH threshold
tt threshold

**BRUSSEL** 

E<sub>cm</sub>: 91 GeV

 $\rm E_{cm}:161~GeV$ 

E<sub>cm</sub>: 240 GeV

E<sub>cm</sub> : 350 GeV

 $5 \ 10^{12} \ \text{e+e-} \rightarrow \text{Z}$ 

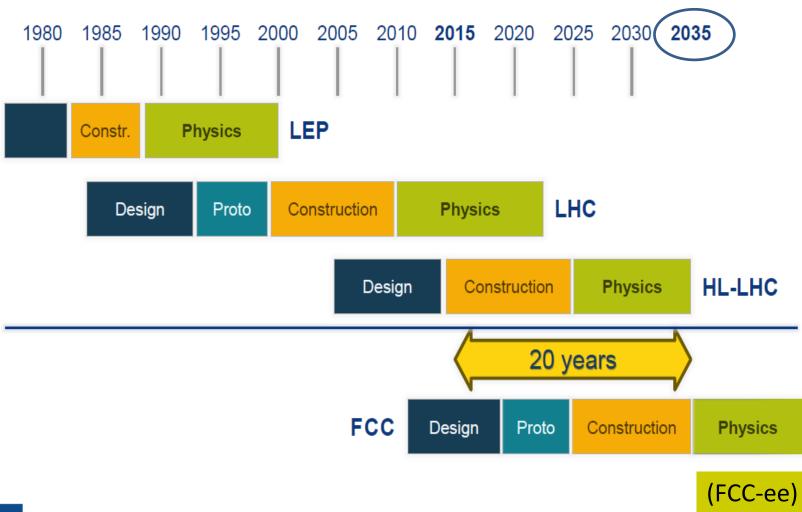
 $10^8$  e+e-  $\rightarrow$  WW

10<sup>6</sup> e+e-  $\rightarrow$  ZH

10<sup>6</sup> e+e-  $\rightarrow$  tt

LEP x 10<sup>5</sup>

LEP  $\times 2.10^3$ 


Never done

Never done

06.08.2016



#### **CERN Circular Colliders and FCC**





06.08.2016 23