3–10 Aug 2016
Chicago IL USA
US/Central timezone
There is a live webcast for this event.

Overview and Highlights of the Belle II Computing and Software (25' + 5')

4 Aug 2016, 12:50
30m
Ontario

Ontario

Sheraton Grand Chicago 301 East Water Street Chicago IL 60611 USA
Oral Presentation Computing and Data Handling Computing

Speaker

Malachi Schram

Description

The Belle II experiment is the next-generation flavor factory experiment at the SuperKEKB accelerator in Tsukuba, Japan. The first physics run will take place in 2017, then we plan to increase the luminosity gradually. We will reach the world's highest luminosity L=8x10^35 cm-2s-1 finally and collect a total of 50ab-1 data by the end of 2024. Such a huge amount of data allows us to explore the new physics possibilities through a large variety of analyses in quark sectors as well as tau physics and to deepen understanding of nature. In terms of the software and computing, the Belle II experiment is highly challenging. The higher luminosity leads to higher background levels and requires a major upgrade of the detector. As a consequence, the simulation, reconstruction, and analysis software must also upgraded substantially. Most of the software has been redesigned from scratch, taking into account the experience from Belle, the predecessor of Belle II, and other experiments and utlizing new technologies. The Belle II computing system is expected to manage the process of massive raw data, production of copious simulation and many concurrent user analysis jobs. The required resource estimation for the Belle II computing system shows a similar evolution curve of the resource pledges in LHC experiments. Eventually, we have to handle several tens of Petayte of beam data per year. Here, the Belle II is a worldwide collaboration of about 700 scientists working in 23 countries and region. It is natural to adopt a distributed computing model based on existing technologies and infrastructure. We chosen DIRAC as a workload and data management system, which provides us an interoperability of heterogeneous computing systems such as grids with different middleware, academic/commercial clouds and local computing clusters. This year, we will experience the first beam data from the SuperKEKB accelerator, the advanced Trans-Pacific network and the full replacement of the central computing system at KEK with upgraded resources. We will present the overview and highlights of the recent achievements and present status of the Belle II computing system and software in this presentation.

Primary authors

Malachi Schram Takanori Hara Thomas Kuhr

Presentation materials