EW precision tests at the FCC-ee

M. Antonelli LNF-INFN

On behalf of the FCC-ee study group

The FCC: a long-term strategy for HEP

FCC-hh Direct exploration of heavy new physics (pp, 100 TeV) (up to 20-30 TeV)

& e^{\pm} (120 GeV)-p (7, 16 & 50 TeV) collisions FCC-eh)

≥60 years of e^+e^- , pp, ep/A physics at highest energies

CERN Circular Colliders and FCC

06.08.2016

common layouts for hh & ee

lepton collider parameters

parameter	FCC-ee					LEP2
physics working point	Z		ww	ZH	tt _{bar}	
energy/beam [GeV]	45.6		80	120	175	105
bunches/beam	30180	91500	5260	780	81	4
bunch spacing [ns]	7.5	2.5	50	400	4000	22000
bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	4.2
beam current [mA]	1450	1450	152	30	6.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3	0.0012
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	3.34
synchrotron power [MW]	100			22		
RF voltage [GV]	0.4	0.2	0.8	3.0	10	3.5
rms cm E spread SR [%]	0.03	0.03	0.05	0.07	0.10	0.11
rms cm E spread SR+BS [%]	0.15	0.06	0.07	0.08	0.12	0.11

- "baseline" is based on a conservative optics with 2 lps
 all efforts are developed to reach the target
- overlap linear and circular machines
 Circ: High luminosity, experimental environment (2 to 4 IP), E_{CM} calibration
 Linear: higher energy reach, longitudinal beam polarization

FCC-ee PHYSICS PROGRAM

- Z and W Electroweak physics (5x10¹²Z, 10⁸ WW) precision energy calibration (100 KeV) \rightarrow m $_{\rm Z}$, $\Gamma_{\rm Z}$, m $_{\rm W}$, $\sin^2\theta_{\rm W}$ eff possibly precision measurement of $\alpha_{\rm QED}$ (m $_{\rm Z}$), $\alpha_{\rm S}$ (m $_{\rm Z}$) high luminosity search for rare Z decays neutrino counting and search for RH neutrinos
- Tera Z is also a Flavour Factory (boosted and tagged b, c, τ)
- Higgs Physics at E_{CM}= 240 GeV (ZH) and 350 GeV, 2 10⁶ ZH events unique determination of ZH coupling and H width, all fermion and boson couplings (except HHH) rare decays
- top quark physics at 350 -370 GeV (ses talk by Freya Blekman)
 top quark mass (essential for precision EW tests) to exp. precision of 10 MeV
 top quark couplings (no need for beam polarization)
- investigating run at E_{CM} = m_H to determine Hee coupling

FCC-ee physics: High -precision W, Z, top

WW threshold scan: OkuW

tt threshold scan: MegaTops

- **⇒** Exquisite E_{beam} (unique!)
- → m_Z, Γ_Z to < 100 keV (2.2 MeV)</p>
- Asymmetries
 - \Rightarrow $\sin^2\theta_W$ to 6×10^{-6} (1.6×10-4)
 - ⇒ $\alpha_{QED}(m_Z)$ to 3×10⁻⁵ (1.5×10⁻⁴)
- Branching ratios, R_I, R_b
 - \Rightarrow $\alpha_s(m_7)$ to 0.0002 (0.002)

Threshold scan

- → m_W to 500 keV (15 MeV)
- Branching ratios R_I, R_{had}
 - $\rightarrow \alpha_{\rm S}({\rm m_W})$ to 0.0002
- Radiative returns e+e-→γZ
 - **►** N_v to 0.0004 (0.008)

Threshold scan

- → m_{top} to 10 MeV (500 MeV)
- λ_{top} to 13%
- EW couplings to 1%

■ Mostly thanks to: (i) huge stats, (ii) threshold scans with E_{beam} ~ 0.1 MeV

Beam polarization and E-calibration @ FCC-ee

Precise meast of E_{beam} by resonant depolarization

~100 keV each time the meas is made

LEP >

At LEP transverse polarization was achieved routinely at Z peak.

instrumental in 10⁻³ measurement of the Z width in 1993 led to prediction of top quark mass (179+- 20 GeV) in Mar'94

ν

F [MeV]

At LEP beam energy spread destroyed polarization above 61 GeV

 $\sigma_E \propto E^2/\sqrt{\rho}$ At TLEP transverse polarization up to at least 81 GeV (WW threshold) to go to higher energies requires spin rotators and siberian snake

FCC-ee: use 'single' bunches to measure the beam energy continuously

→ no interpolation errors due to tides, ground motion or trains etc...

<< 100 keV beam energy calibration around Z peak and W pair threshold.

 Δm_Z ~0.1 MeV, $\Delta \Gamma_Z$ ~0.1 MeV, Δm_W ~ 0.5 MeV

A Sample of Essential Quantities:

X	Physics	Present precision		TLEP stat Syst Precision	TLEP key	Challenge
M _Z MeV/c2	Input	91187.5 ±2.1	Z Line shape scan	0.005 MeV <±0.1 MeV	E_cal	QED corrections
$\Gamma_{ m Z}$ MeV/c2	Δρ (T) (no Δα!)	2495.2 ±2.3	Z Line shape scan	0.008 MeV <±0.1 MeV	E_cal	QED corrections
R_ℓ	α_{s} , δ_{b}	20.767 ± 0.025	Z Peak	0.0001 ± 0.002 - 0.0002	Statistics	QED corrections
N_{ν}	Unitarity of PMNS, sterile v's	2.984 ±0.008	Z Peak	0.00008 ±0.004	->lumi meast	QED corrections to
	sterne v s		Z+γ(161 GeV)	0.0004-0.001	Statistics	Bhabha scat.
R _b	δ_{b}	0.21629 ±0.00066	Z+γ(161 GeV) Z Peak	0.0004-0.001 0.000003 ±0.000020 - 60	Statistics Statistics, small IP	Bhabha scat. Hemisphere correlations
R _b M _W MeV/c2			* ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	0.000003	Statistics,	Hemisphere

Physics of μ + μ - asymmetry: $sin^2\theta^{lept}_{W}$ and α_{QED}

Uncertainties in
$$m_{top}$$
, $\Delta\alpha(m_z)$, m_H , etc.... $\Delta sin^2\theta^{lept}_W \sim \Delta\alpha(m_z)/3 = 10^{-5}$ have to reduce $\Delta\alpha(m_z)$

New idea: exploit large statistics of FCC-ee to measure $\alpha_{QED}(m_Z)$ directly close to m_Z

Extrapolation error becomes negligible!

P. Janot: FCC-ee Physics Vidyo Meeting, June 29th 2015

Use different sensitivity vs Vs nice Z lineshape scan measure both within the same environment

@
$$M_Z$$
 A_{FB} to extract $\sin^2\theta^{lept}_W$
 $@M_Z + 3 \text{ GeV } M_Z - 3 \text{ GeV to extract } \alpha_{QED}(M_Z)$

Precise detrmination of α_{QED} form A_{FB}

Theoretical limitations

FCC-ee

R. Kogler, Moriond EW 2013

SM predictions (using other input)

$$M_W = 80.3593 \pm (0.0002)_{m_t} \pm 0.0001 M_Z \pm 0.0003 M_{\Delta\alpha_{had}} \pm 0.0005 \pm 0.0001 M_Z \pm 0.0000 M_H \pm 0.0040_{theo}$$

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.0000015 \rangle_{m_t} \pm 0.0000015 \rangle_{M_Z} \pm 0.0000015 \rangle_{\Delta \alpha_{\text{had}}}$$

$$0.000001 \pm 0.0000014 \rangle_{\alpha_S} \pm 0.00000002 \rangle_{M_H} \pm 0.0000047 \rangle_{\text{theo}}$$

Experimental errors at FCC-ee will be 20-100 times smaller than the present errors. BUT can be typically 10 -30 times smaller than present level of theory errors Will require significant theoretical effort and additional measurements!

Radiative correction workshop 13-14 July 2015 stressed the need for 3 loop calculations for the future!

06.08.2016

NB width of this line: Z mass error. Without FCC-ee its 2.2 MeV!

in other words $\Delta(\Delta \rho)$ = \pm 10⁻⁵ + several tests of same precision

06.08.2016

New physics reach

Effective lagrangian Dim-6 operators

$$\begin{split} &\frac{1}{2}\frac{\left(\bar{c}_{W}+\bar{c}_{B}\right)}{m_{W}^{2}}(\mathcal{O}_{W}+\mathcal{O}_{B})+\frac{\bar{c}_{T}}{v^{2}}\mathcal{O}_{T}+\frac{\bar{c}_{LL}^{(3)l}}{v^{2}}\mathcal{O}_{LL}^{(3)l}+\frac{\bar{c}_{R}^{e}}{v^{2}}\mathcal{O}_{R}^{e}\,,\\ &\frac{1}{2}\frac{\left(\bar{c}_{W}-\bar{c}_{B}\right)}{m_{W}^{2}}(\mathcal{O}_{W}-\mathcal{O}_{B})+\frac{\bar{c}_{HW}}{m_{W}^{2}}\mathcal{O}_{HW}+\frac{\bar{c}_{HB}}{m_{W}^{2}}\mathcal{O}_{HB}+\frac{\bar{c}_{g}}{m_{W}^{2}}\mathcal{O}_{g}+\frac{\bar{c}_{\gamma}}{m_{W}^{2}}\mathcal{O}_{\gamma}\\ &+\frac{\bar{c}_{H}}{v^{2}}\mathcal{O}_{H}+\frac{\bar{c}_{f}}{v^{2}}\mathcal{O}_{f}\,.\\ &\bar{c}_{i}=c_{i}\frac{M^{2}}{\Lambda^{2}}\,, \end{split}$$

sensitive to heavy new physics up to 100 TeV

Model examples:

MSSM, heavy gauge singlet that couples to the SM via a Higgs portal

Conclusion

lesson from past experience:

Precision EW tests allowed to predict mass of particles before discovery(Top, Higgs) and excluded new physics up to (100 GeV)

FCC-ee will allow sensitivity to new physics up to 100 TeV Through its effect in quantum corrections

FCC-ee offers a broad, coherent program of EW precision measts on 'all fronts'.

Transverse polarization is critical for Z and W masses, Z width. (unique feature of circular colliders)

No physics case could be found for longitudinal polarization or Ecm larger than 370 GeV at the FCC-ee: AFB @ large luminosities over-compensate, and the FCC-hh is better suited for higher energy

Resonant depolarization accuracy at TLEP/FCCee – extrapolation

Per	beam,	not	ECM
-----	-------	-----	------------

Source	$\Delta E/E$	$\Delta E~(E{=}45.6~{\rm GeV})$
Electron mass	$3 \cdot 10^{-7}$	15 keV
Revolution frequency	10^{-10}	0 keV
Frequency of the RF magnet	$2 \cdot 10^{-8}$	1 keV
Width of excited resonance	$2 \cdot 10^{-6}$	90 keV
Interference of resonances	$2 \cdot 10^{-6}$	90 keV
Spin tune shifts from long. fields	$1.1\cdot 10^{-7}$	5 keV
Spin tune shifts from hor. fields	$2 \cdot 10^{-6}$	$100 \; \mathrm{keV}$
Quadratic non-linearities	10^{-7}	$5~{ m keV}$
Total error	$4.4\cdot 10^{-6}$	$200~{\rm keV}$

mass	/ Z width
15keV	0keV
0keV	0keV
1keV	0keV
1keV	1keV
9keV	9keV
5keV	5keV
3keV	1keV
5keV	5keV
~20keV	~12keV
~40keV	~20keV

~23keV

Correlated/Z Uncorrelated

IP specific errors total

- ~45keV
- Statistical errors are divided by sqrt(10,000) negligible
- This is a zeroth order working hypothesis
- The table should eventually also include effects that were negligible at the time of LEP

Extracting physics from sin²0 lept w

1. Direct comparison with m_z

Uncertainties in m_{top} , $\Delta\alpha(m_z)$, m_H , etc....

 $\Delta \sin^2\theta^{\text{lept}}_{\text{W}} \sim \Delta\alpha(\text{m}_z)/3 = 10^{-5}$ if we can reduce $\Delta\alpha(\text{m}_z)$ (see P. Janot idea)

2. Comparison with m_w/m_z

Compare above formula with similar one:

$$\sin^2\theta_{W}\cos^2\theta_{W} = \frac{\pi d \left(M_z^2\right)}{\sqrt{2} G_F M_z^2} - \frac{\cos^2\theta_{W}}{\sin^2\theta_{W}} \Delta \rho + 2 \frac{G^2\theta_{W}}{\sin^2\theta_{W}} \epsilon_3 + \frac{c^2 - S^2}{S^2} \epsilon_2$$

Where it can be seen that $\Delta \alpha(m_1)$ cancels in the relation.

The limiting error is the error on m_w.

For $\Delta m_W = 0.5$ MeV this corresponds to $\Delta \sin^2 \theta^{lept}_W = 10^{-5}$

The main players

Inputs: $G_F = 1.1663787(6) \times 10^{-5} / \text{GeV}^2$ $M_Z = 91.1876 \pm 0.0021 \text{ GeV}$ $\alpha = 1/137.035999074(44)$	from muon life time Z line shape electron g-2	6 10 ⁻⁷ 2 10 ⁻⁵ 3 10 ⁻¹⁰		
EW observables sensitive to ne	w physics:			
$M_W = 80.385 \pm 0.015$	LEP, Tevatron	2 10 ⁻⁴		
$\sin^2\theta_W^{eff} = 0.23153 \pm 0.00016$	WA Z pole asymmetries	7 10 ⁻⁴		
+ Γ Rb etc				
Nuisance paramenters:				
α (M _z) =1/127.944(14)	hadronic corrections	1.1 10 ⁻⁴		
	to running alpha			
$\alpha_{\rm S}$ (M _Z) =0.1187(17)	strong coupling constant	1.7 10 ⁻³		
$m_{top} = 173.34 \pm 0.76 \text{ GeV}$	from LHC+Tevatron combination	4 10-3		
m_H = 125.09±0.21 (stat.)±0.11 (syst.) GeV/c ² (CMS+ATLAS) 2 10 ⁻³				

$$\varepsilon_2$$

Sin2 Deff is defined from

also

EWRCs

relations to the well measured $\mathbf{G_{F}}~\mathbf{m_{Z}}~\alpha_{\mathbf{OED}}$

at first order:

$$\Delta \rho = \alpha / \pi \ (m_{top}/m_z)^2$$
$$- \alpha / 4\pi \ \log (m_h/m_z)^2$$

$$\varepsilon_3 = \cos^2\theta_w \alpha / 9\pi \log (m_h/m_z)^2$$

$$\delta_{\rm vb}$$
 =20/13 α / π (m_{top}/m_z)²

complete formulae at 2d order including strong corrections are available in fitting codes

e.g. ZFITTER, GFITTER

G fitter sw

m, [GeV]

2035 20xx

Bosons

Experimental conditions

- 2-4 IPs L*~2m
- bunch crossing spacing from 2-5 ns (Z) up to 3μs (top)
- no pile-up (<0.001 at FCC-Z/CrabWaist)
- beamstrahlung is mild for experiments

	FCCZ	FCCZ, c.w	CEPC	FCC ZH	ILC500
Npairs / BX	200	9900	3260	640	165000
Leading process	96% LL	65% LL	80% LL	90% LL	60% BH
Epairs / BX (GeV)	86	2940	2600	570	400000
Leading process	100% LL	100% LL	98% LL	96% LL	70% BH

- Beam energy calibration for Z and W running
- IR design with crossing angle is not trivial
 - → a challenging magnet design issue.

E. Perez, C. Leonidopoulos

Input from Physics to the accelerator design

- O. Nobody complains that the luminosity is too high (the more you get, the more you want) no pile up, even at the Z: at most 1ev /300bx
- 1. Do we need polarized beams?
 - -1- transverse polarization:

```
continuous beam Energy calibration with resonant depolarization central to the precision measurements of m_Z, m_W, \Gamma_Z requires 'single bunches' and calibration of both e+ and e- a priori doable up to W energies -- workarounds exist above (e.g. \gamma Z events) large ring with small emittance excellent. Saw-tooth smaller than LEP for Z need wigglers (or else inject polarized e- and e+) to polarize 'singles'; simulations ongoing (E. Gianfelice, M. Koratzinos, I.Kopp)
```

- -2- longitudinal polarization requires spin rotators and is very difficult at high energies
 - -- We recently found that it is not necessary to extract top couplings (Janot)
 - -- improves Z peak measurements if loss in luminosity is not too strong but brings no information that is not otherwise accessible

2. What energies are necessary?

- -- in addition to Z, W, H and top listed the following are being considered
 - -- e+e- → H(125.2) (requires monochromatization A. Faus) (under study)
 - -- e+e- at top threshold + ~20 GeV for top couplings (E_max up to 180 -185 GeV)
 - -- no obvious case for going to 500 GeV