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New physics discovery
up to 1000 TeV

via its quantum 
effects 
rare processes

very weak couplings
(light new physics)”

FCC-hh
(pp, 100 TeV)

The FCC: a long-term strategy for HEP

& e± (120 GeV)–p (7, 16 & 50 TeV) collisions FCC-eh) 

≥60 years of e+e-, pp, ep/A physics at highest energies

Direct exploration of heavy new physics 
(up to 20-30 TeV)

LEP
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(FCC-ee)



• 2 main IPs in A, G for both machines

• asymmetric IR optic/geometry for ee

to limit synchrotron radiation to detector

common layouts for hh & ee

11.9 m 30 mrad

9.4 m

FCC-hh/

ee Booster

Common

RF (tt)
Common

RF (tt)

IP

IP

0.6 m

Max. separation of 3(4) rings is about 12 m: 

wider tunnel or two tunnels are necessary 

around the IPs, for ±1.2 km. 

Lepton beams must cross over through 

the common RF to enter the IP from 

inside.

Only a half of each ring is filled with 

bunches.

FCC-ee 1, FCC-ee 2, 
FCC-ee booster (FCC-hh footprint)

FCC-hh

layout



parameter FCC-ee LEP2

physics working point Z WW ZH ttbar

energy/beam [GeV] 45.6 80 120 175 105

bunches/beam 30180 91500 5260 780 81 4

bunch spacing [ns] 7.5 2.5 50 400 4000 22000

bunch population [1011] 1.0 0.33 0.6 0.8 1.7 4.2

beam current [mA] 1450 1450 152 30 6.6 3

luminosity/IP x 1034cm-2s-1 210 90 19 5.1 1.3 0.0012

energy loss/turn [GeV] 0.03 0.03 0.33 1.67 7.55 3.34

synchrotron power [MW] 100 22

RF voltage [GV] 0.4 0.2 0.8 3.0 10 3.5

rms cm E spread SR [%] 0.03 0.03 0.05 0.07 0.10 0.11

rms cm E spread SR+BS [%] 0.15 0.06 0.07 0.08 0.12 0.11

lepton collider parameters
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• “baseline” is based on a conservative optics with 2 Ips
all efforts are developed to reach the target 
• overlap linear and circular machines
Circ: High luminosity, experimental environment (2 to 4 IP), ECM calibration 
Linear:  higher energy reach, longitudinal beam polarization
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• Z and W Electroweak physics (5x1012Z, 108 WW) 
precision energy calibration (100 KeV) m Z, Z, mW, sin2 W 

eff

possibly precision measurement of QED (mZ) , S (mZ) 
high luminosity search for rare Z decays
neutrino counting and search for RH neutrinos

• Tera Z is also a Flavour Factory  (boosted and tagged b, c, t)

• Higgs Physics at ECM= 240 GeV  (ZH) and 350 GeV, 2 106 ZH events
unique determination of ZH coupling and H width, 
all fermion and boson couplings  (except HHH)
rare decays 

• top quark physics  at 350 -370 GeV (ses talk by Freya Blekman)

top quark mass (essential for precision EW tests) to exp. precision of 10 MeV 
top quark couplings (no need for beam polarization)   

• investigating run at ECM= mH to determine Hee coupling 

FCC-ee PHYSICS PROGRAM
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FCC-ee physics: High –precision W, Z, top



Precise meast of Ebeam by resonant depolarization
~100 keV each time the meas is made LEP

At LEP transverse polarization was achieved routinely at Z peak.
instrumental in 10-3 measurement of the Z width in 1993 
led to prediction of top quark mass (179+- 20 GeV) in Mar’94

At LEP beam energy spread destroyed polarization above 61 GeV
E  E2/ At TLEP transverse polarization up to at least 81 GeV (WW threshold)
to go to higher energies requires spin rotators and siberian snake

FCC-ee: use ‘single’ bunches to measure the beam energy continuously
no interpolation errors due to tides, ground motion or trains etc…

<< 100 keV beam energy calibration around Z peak and W pair threshold. 
mZ ~0.1 MeV, Z ~0.1 MeV, mW ~ 0.5 MeV

Beam polarization and E-calibration @ FCC-ee



A Sample of Essential Quantities: 

X Physics
Present
precision

TLEP stat
Syst Precision

TLEP key Challenge

MZ
MeV/c2

Input 91187.5 
2.1

Z Line shape
scan

0.005 MeV
<0.1 MeV

E_cal QED 
corrections

Z
MeV/c2

 (T)
(no !)

2495.2  
2.3

Z Line shape
scan

0.008 MeV
<0.1 MeV

E_cal QED 
corrections

Rl
s , b 20.767 

 0.025
Z Peak 0.0001

 0.002
- 0.0002 

Statistics QED
corrections

N
Unitarity of 
PMNS, 
sterile ’s

2.984 
0.008

Z Peak

Z+(161 GeV)

0.00008
0.004 
0.0004-0.001 

->lumi meast

Statistics

QED 
corrections to 
Bhabha scat.

Rb
b 0.21629  

0.00066
Z Peak 0.000003

0.000020 - 60
Statistics, 
small IP

Hemisphere
correlations

MW
MeV/c2

, 3 , 2, 

(T, S, U) 
80385
± 15

Threshold
(161 GeV)

0.3 MeV
<1 MeV

E_cal &
Statistics

QED 
corections

mtop
MeV/c2

Input 173200
± 900

Threshold
scan

10 MeV E_cal &
Statistics

Theory limit
at 100 MeV?
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Uncertainties in mtop , (mz) , mH , etc…. 
sin2lept

W ~  (mz) /3   =   10-5  have to reduce (mz) 

Physics of m+ m- asymmetry: sin2lept
W and QED

@ MZ

AFB to extract sin2lept
W

@MZ +3 GeV  MZ -3  GeV to extract QED(MZ)

Physics discoveries

Unwanted error

Use different sensitivity vs √s
nice Z lineshape scan
measure both within the same environment 
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AFB
mm at √s-=87.9 GeV √s+=94.3 GeV

error cancellation of  +3 vs -3 points. 

Precise detrmination of  QED form AFB
Beam energy spreadAngular resolution



Theoretical limitations

R. Kogler, Moriond EW 2013

FCC-ee

0.0002 0.0001  

0.0001 

0.0003

0.0005

SM predictions (using other input)

0.0000015 0.000001

0.0000014

0.00001

0.00001

0.0000

0.000000
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Experimental errors at FCC-ee will be 20-100 times smaller than the present errors. 
BUT can be typically 10 -30 times smaller than present level of theory errors
Will require significant theoretical effort and additional measurements!  

Radiative correction workshop 13-14 July 2015 stressed the need for 3 loop 
calculations for the future!



in other words .... ()=  10-5    + several tests of same precision
06.08.2016 14

NB width of this line : Z mass error. Without FCC-ee its 2.2 MeV! 
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New physics reach

Ellis, You

1510.04561 

Effective lagrangian Dim-6 operators

Model examples: 
MSSM , heavy gauge singlet that couples to the SM via a Higgs portal 

Henning et al 
1404.1058

Singlet

A/mS = 1

MSSM

Xt = 0

MSSM

Xt = √6

sensitive to heavy new physics up to 100 TeV



8/6/2016

Conclusion

lesson from past experience:
Precision EW tests allowed to predict  mass of particles 

before discovery(Top, Higgs) and excluded new physics up to (100 
GeV)

FCC-ee will allow sensitivity to new physics up to 100 TeV
Through its effect in quantum corrections

FCC-ee offers a broad, coherent program of EW precision measts on 
‘all fronts’.
Transverse polarization is critical for Z and W masses, Z width. (unique 

feature of circular colliders)

No physics case could be found for longitudinal polarization or Ecm larger than 370 
GeV at the FCC-ee: AFB @ large luminosities over-compensate, and the FCC-hh is 
better suited for higher energy 



Resonant depolarization accuracy at 
TLEP/FCCee – extrapolation 

• Statistical errors are divided by sqrt(10,000) - negligible

• This is a zeroth order working hypothesis

• The table should eventually also include effects that were negligible at the time of LEP

Correlated/Z 
mass

Uncorrelated
/ Z width

15keV 0keV

0keV 0keV

1keV 0keV

1keV 1keV

9keV 9keV

5keV 5keV

3keV 1keV

5keV 5keV

~20keV ~12keV

~40keV ~20keV

~45keV ~23keV

Per beam, not ECM

IP specific errors

total



Uncertainties in mtop , (mz) , mH , etc…. 
sin2lept

W ~  (mz) /3   =   10-5  if we can reduce (mz) (see P. Janot idea)

2. Comparison with mw/mZ

Compare above formula with similar one: 

sin2W  cos2W  =                                  

Where it can be seen that (mz) cancels in the relation.
The limiting error is the error on mW.  
For mW= 0.5 MeV this corresponds to sin2lept

W = 10-5

1. Direct comparison with mZ

Extracting physics from sin2lept
W

)
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The main players

Inputs: 
GF = 1.1663787(6) × 10−5 /GeV2     from  muon life time              6 10-7

MZ = 91.1876 ± 0.0021 GeV Z line shape                             2 10-5

α = 1/137.035999074(44) electron g-2 3 10-10

EW observables sensitive to new physics:
MW = 80.385 ± 0.015                                          LEP, Tevatron 2 10-4

sin2W
eff  = 0.23153 ± 0.00016                       WA  Z pole asymmetries 7 10-4

+  Rb etc... 

Nuisance paramenters: 
 (MZ) =1/127.944(14)                               hadronic corrections              1.1 10-4

to running alpha 

S (MZ) =0.1187(17)                                       strong coupling constant        1.7 10-3 

mtop    = 173.34 ± 0.76 GeV from LHC+Tevatron 4 10-3

combination

mH = 125.09±0.21 (stat.)±0.11 (syst.) GeV/c2 (CMS+ATLAS)                2 10-3



relations to the well measured

GF mZ QED

 =  /p  (mtop/mZ)2

-  /4p  log (mh/mZ)2

at first order:

3  = cos2w  /9p  log (mh/mZ)2

b =20/13  /p  (mtop/mZ)2

complete formulae at 2d order
including strong corrections 
are available in fitting codes

e.g. ZFITTER , GFITTER

EWRCs
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Picture and slide layout, 

courtesy Jörg Wenninger



8/6/2016

• 2-4 IPs  L*~2m
• bunch crossing spacing from 2-5 ns (Z) up to 3ms (top)
• no pile-up (<0.001 at FCC-Z/CrabWaist)
• beamstrahlung is mild for experiments 

• Beam energy calibration for Z and W running
• IR design with crossing angle is not trivial   

 a challenging magnet design issue.

E. Perez, 
C. Leonidopoulos

Experimental conditions
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0. Nobody complains that the luminosity is too high (the more you get, the more you want)
no pile up, even at the Z:  at most 1ev /300bx

1. Do we need polarized beams? 
-1- transverse polarization: 

continuous beam Energy calibration with resonant depolarization
central  to the precision measurements of mZ , mW , Z

requires ‘single bunches’  and calibration of both e+ and e-
a priori doable up to W energies -- workarounds exist above (e.g. Z events)
large ring with small emittance excellent. Saw-tooth smaller than LEP for Z 
need wigglers (or else inject polarized e- and e+) to polarize ‘singles’; 

simulations ongoing (E. Gianfelice, M. Koratzinos, I.Kopp)

-2- longitudinal polarization requires spin rotators and is very difficult at high energies
-- We recently found that it is not necessary to extract top couplings (Janot)
-- improves Z peak measurements if loss in luminosity is not too strong

but brings no information that is not otherwise accessible 

2. What energies are necessary? 
-- in addition to Z, W, H and  top listed the following are being considered

-- e+e- H(125.2)  (requires monochromatization A. Faus) (under study)
-- e+e- at top threshold + ~20 GeV for top couplings (E_max up to 180 -185 GeV)
-- no obvious case for going to 500 GeV

Input from Physics to the accelerator design 


