The State of Gravitational Wave Detection with Pulsar Timing Arrays

VOG

Scott Ransom

National Radio Astronomy Observatory / University of Virginia

Millisecond pulsars (MSPs) as detectors for nanoHz GWs from Super-Massive Black Hole Binaries (SMBHBs)

tent Universe

Within Our Galaxy

Image: Bill Saxton (NRAO/AUI)

Gravitational wave physics experiments

What's a Millisecond Pulsar ?

- Rapidly Rotating Neutron Star! (300-700 times/sec!)
- Size of city:
 - R ~ 10-15 km
- Mass greater than Sun:
 - M ~ 1.4-2.0 M_{sun}
- Strong Magnetic Fields:
 - B ~ 10⁸-10⁹ Gauss
- Pulses are from a "lighthouse" type effect
- "Spin-down" power up to 1000s times more than the Sun's total output!

Millisecond Pulsars: via "Recycling"

Supernova produces a neutron star

Picture credits: Bill Saxton, NRAO/AUI/NSF

Millisecond Pulsars: via "Recycling"

Supernova produces a neutron star

Red Giant transfers matter to neutron star

Picture credits: Bill Saxton, NRAO/AUI/NSF

Millisecond Pulsars: via "Recycling"

Supernova produces a neutron star

Red Giant transfers matter to neutron star

Millisecond Pulsar emerges with a white dwarf companion

Picture credits: Bill Saxton, NRAO/AUI/NSF

Unambiguously account for every rotation of a pulsar over years

Measurement - Model = Timing Residuals

Predict each pulse to ~200 ns over 2 yrs!

Table 1 Physical parameters for PSR J1614-2230				
Parameter	Value			
Ecliptic longitude (λ)	245.78827556(5)°			
Ecliptic latitude (β)	-1.256744(2)			
Proper motion in λ	9.79(7) mas yr ⁻¹			
Proper motion in β	-30(3) mas yr ⁻¹			
Parallax	0.5(6) mas			
Pulsar spin period	3.1508076534271(6) ms			
Period derivative	$9.6216(9) \times 10^{-21} \text{ s} \text{ s}^{-1}$			
Reference epoch (MJD)	53,600			
Dispersion measure*	$34.4865 \mathrm{pc}\mathrm{cm}^{-3}$			
Orbital period	8.6866194196(2)d			
Projected semimajor axis	11.2911975(2) light s			
First Laplace parameter ($esin \omega$)	$1.1(3) \times 10^{-7}$			
Second Laplace parameter ($e\cos \omega$)	$-1.29(3) \times 10^{-6}$			
Companion mass	0.500(6) <i>M</i> ⊙			
Sine of inclination angle	0.999894(5)			
Epoch of ascending node (MJD)	52,331.1701098(3)			
Span of timing data (MJD)	52,469–55,330			
Number of TOAs†	2,206 (454, 1,752)			
Root mean squared TOA residual	1.1 μs			
Right ascension (J2000)	16 h 14 min 36.5051(5) s			
Declination (J2000)	-22° 30' 31.081(7)''			
Orbital eccentricity (e)	$1.30(4) imes 10^{-6}$			
Inclination angle	89.17(2)°			
Pulsar mass	$1.97(4)M_{\odot}$			
Dispersion-derived distance‡	1.2 kpc			
Parallax distance	>0.9 kpc			
Surface magnetic field	$1.8 imes 10^8 \mathrm{G}$			
Characteristic age	5.2 Gyr			
Spin-down luminosity	Demorest et al 2			

Demorest et al. 2010, Nature

The Binary Pulsar: B1913+16 Three post-Keplerian Observables: ώ, γ, P_{orb} Indirect detection of Gravitational Radiation!

Direct Gravitational Wave Detection (Pulsar Timing Array)

- Looking for nHz freq gravitational waves from super massive black hole binaries
- Need good MSPs:
 - Significance scales with the number of MSPs being timed
- Must time 20+ pulsars for 10+ years at precision of ~100 nanosec!

Bill Saxton (NRAO/AUI)

Australia

Europe

For more information, see *nanograv.org*

Telescopes	Arecibo GBT	Nancay Effelsberg Westerbork Jodrell Bank Sardinia RT	Parkes
Observing Time	1x	~5x+	~3x
Advantages	Sensitivity	Cadence Phased Array (LEAP)	Cadence Unique Pulsars Single telescope
Disadvantages	Sky coverage Oversubscription Telescope threats	Systematics	Sensitivity Telescope threat

NANOGrav 9-yr Data

	8 00 00 00 00 00 00 00 00 00 00 00 00 00						A0/440 A0/440 A0/440 A0/1400 GBT7800 GBT7800 GBT7800 GBT7800 GBT7400 G	J0023 + 0923 $J0020 + 0451$ $J0030 + 0451$ $J00340 + 4130$ $J0645 + 5158$ $J00645 + 5158$ $J0031 - 1902$ $J1012 + 5307$ $J1012 + 5307$ $J1012 + 5307$ $J1024 - 0719$ $J1024 - 0719$ $J1012 + 5307$ $J1012 + 5307$ $J1012 + 5307$ $J1640 + 2224$ $J1640 + 2224$ $J1640 + 2224$ $J1640 + 2224$ $J1643 - 1224$ $J1738 + 0333$	
	oo 000						A0/430 A0/1400 GBT/1400 GBT/1400 GBT/1400 GBT/1400 GBT/1400 GBT/1400 GBT/1400 A0/1400	J1741 + 1351 J1744 - 1134 J1747 - 4036 J1832 - 0836 J1853 + 1303 B1855 + 09	
	88 00 88 88 88 81				00 00 00 88 88		A0/1400 A0/2100 GBT/960 GBT/960 A0/1400 A0/1400 GBT/960 GBT/960 A0/140	J1903 + 0327 $J1909 - 3744$ $J1910 + 1256$ $J1918 - 0642$ $J1923 + 2515$ $B1023 + 211$	
	80 90 9						GBT71360 A072100 A07430 A07430 A074400 A074400 A074400 GBT71400 GBT71400 A074400 A07740 A07740 A00	B1957 + 21 J1944 + 0907 J1949 + 3106 B1953 + 29 J2010 - 1323 J2017 + 0603	
			**************************************	×	8		A0/430 A0/1400 GBT/1400 GBT/1400 A0/1400 A0/2100 GBT/1400 GBT/1400 GBT/1400 A0/1400 A0/1400 A0/1400	J2043 + 1711 $J2145 - 0750$ $J2214 + 3000$ $J2302 + 4442$ $J2317 + 1439$	
2004		2006	2008	201 D	0 Date [yr]	2012 20	14		

J1909-3744

Where do these GWs come from? Coalescing Super-Massive Black Holes

- · Basically all galaxies have them
- $\cdot\,$ Masses of $10^6-10^9\,M_{\odot}$
- Galaxy mergers lead to BH mergers
- $\cdot\,$ When BHs within 1pc, GWs are main energy loss
- For total mass M/(1+z), distance d_L , and SMBH orbital freq *f*, the induced timing residuals are:

$$\Delta \tau \sim 10 \,\mathrm{ns} \, \left(\frac{1 \,\mathrm{Gpc}}{\mathrm{d_L}}\right) \left(\frac{\mathrm{M}}{10^9 \,\mathrm{M_{\odot}}}\right)^{5/3} \left(\frac{10^{-7} \,\mathrm{Hz}}{f}\right)^{1/3}$$

Potentially measurable with a single MSP!

So where do these GWs come from?

Radio Galaxy 3C66B VLA 20cm image

3C66B At z = 0.02Orbital period 1.05 yrs Total mass 5.4x10¹⁰M_{\odot} (Sudou et al 2003)

Copyright (c) NRAO/AUI 1999

Predicted timing residuals

Ruled out by MSP observations

Jenet et al. 2004, ApJ, 606, 799

So where do these GWs come from?

Possible binary SMBH with ~5 year orbital period... just needs to be ~10x closer!

Graham et al, 2015, Nature

5

ہ ک Time (years)

2

0

Jenet et al. 2004, ApJ, 606, 799

Stochastic GW Backgrounds

An ensemble of many individual GWs, from different directions and at different amplitudes and frequencies

Characteristic strain spectrum is (basically) a power law:

$$h_c(f) = A\left(\frac{f}{\mathrm{yr}^{-1}}\right)^{\alpha}$$

But see Sesana et al 2008, 2010, ...

Table 1: The expected parameters for predicted stochastic backgrounds

Model	A	α	References
Supermassive black holes	$10^{-15} - 10^{-14}$	-2/3	Jaffe & Backer (2003)
amplitude is the only unknown t	Wyithe & Loeb (2003)		
			Enoki et al. (2004)
Relic GWs	$10^{-17} - 10^{-15}$	-10.8	Grishchuk (2005)
Cosmic String	$10^{-16} - 10^{-14}$	-7/6	Maggiore (2000)

e.g. Jenet et al. 2006, ApJ, 653, 1571

A Pulsar Timing Array (PTA) Timing residuals due to a GW have two components: "Pulsar components" are uncorrelated between MSPs "Earth components" are <u>correlated</u> between MSPs

Where are the GWs?

Current power-law models in tension. Maybe

Shannon et al. 2015, Science, 349, 1522 arXiv:1509.07320

Latest models don't show a problem...

From Illustris cosmological simulations

Kelley, Blecha, & Herrnquist 2016, sub., arXiv:1606.01900

- Assuming efficient MBH mergers and power law evolution
- About 30% below the best observational limit

Latest models don't show a problem...

Kelley, Blecha, & Herrnquist 2016, sub., arXiv:1606.01900

- From Illustris cosmological simulations
- Including environmental effects (dynamical friction, stellar scattering, viscous circumbinary disk), but no eccen (yet)

So what about the future?

Newest models suggest background must be > ~3x10⁻¹⁵ (e.g. Kelley, Blecha, & Herrnquist 2016)

So what about the future?

factor of ~2 improvement in ound must be > ~3x10⁻¹⁵ GW sensitivity Herrnquist 2016)

How to do better?

- Improved fidelity and systematics instrumentation
- Better pulsars (right ones are rare) searches
- PSRs are faint (sensitivity limited) bigger telescopes

These improvements dramatically help all pulsar science!

R. Jenet & P. Demorest

Ultra-wideband System (planned)

Fig: Paul Demorest

New All-Sky Pulsar Surveys

- All major radio telescopes are conducting all-sky pulsar surveys
- We know of only about 5% of the total pulsars in the Galaxy!
- These generate lots of data:
 - 1000s of hrs, 1000s of channels, 15000kHz sampling: gives more than a Petabyte!
- Requires huge amounts of high performance computing
 - Many times real-time and millions of false positives

New All-Sky Pulsar Surveys

- All major radio telescopes are conducting all-sky pulsar surveys
- We know of only about 5% of the

- total p
- These - 10 ch giv

Gravitational wave sensitivity is proportional to the number of MSPs!

$$h_{c,\min} \propto \sigma N_{\rm PSRs}^{-1} T^{-1/2}$$

Requi

See Siemens et al. 2013, CQG

performance computing

Many times real-time and millions of false positives

03:27:19.40

DEC 12000

New Millisecond Pulsars

Currently ~70 new Radio/gamma-ray MSPs because of *Fermi*!

~10% of them look like they will be "good timers"

Courtesy: Paul Ray

Outer Orbit P_{orb}=327days M_{WD} = 0.41M_{Sun}

PSR J0337+1715 Triple System

Inner Orbit P_{orb}=1.6days M_{PSR} = 1.44M_{Sun} M_{WD} = 0.20M_{Sun}

"Young, hot"

White Dwarf

Pulsar 16 lt-sec

Center of Mass 118 It-sec

472 It-sec

"Cool, old" White Dwarf

Figure credit: Jason Hessels **Orbital inclinations**

Magnified

15x

J0337+1715 scalar-tensor constraints

- "G" effectively different for NS and WD. They fall in relatively "strong" grav field of outer WD.
- Prediction is ~1-2 orders of mag better than other current or future tests (including Lunar Laser Ranging!), and soon! (Archibald et al in prep).
- $T_1(\alpha_0,\beta_0)$ theories
- GR has $\alpha_0 = \beta_0 = 0$
- Jordan–Fierz–Brans– Dicke theory has β₀=0

N. Wex, private communication

What about the future?

- We only know of about 2,500 out of ~50,000+ pulsars in the Galaxy!
 - Many of them will be "Holy Grails"
 - Sub-MSP, PSR-Black Hole systems, MSP-MSP binary
- Several new huge telescopes...

We need them because we are sensitivity limited!

Square Kilometer Array

- SKA-1 (650 M€) 2020+, SKA-2 (3-5G€) 2025+
- 2 (or 3) arrays in S. Africa and W. Australia
- Should find most of the pulsars in the Galaxy
 - But will be incredibly difficult can't record the data!

Summary

- The pulsars are behaving very well
- GW detection at nHz freqs is likely within 10 yrs
- Many amazing (and bright!) pulsars to be found in the Galaxy: we know of ~5% of total
 - Will provide a huge amount of secondary science
- But we are sensitivity limited (Need big scopes!)
 - FAST in China, MeerKAT in S.Africa, eventually SKA?
 - Will be hard to get the time we need on those
 - Losing GBT and/or Arecibo would be <u>bad</u> for PSRs