Cosmological Effects of Realistic Dark Matter Bound States

William Shepherd
ICHEP 2016, Chicago
August 5, 2016

Based on 1412.5660, 1501.03153 and ongoing work with Matthew Cahill-Rowley, Sonia El-Hedri, and Devin Walker

The Scale of New Physics

- Historically in HEP, we've often known where we were going
 - Fermi theory of weak decays needed new bosons
 - Precision measurements pointed to the top quark
 - Heavy bosons needed symmetry breaking
- After the Higgs discovery, we have no map
 - The Standard Model is stubbornly good
- Where are we going, and how far away is it?

A Picture of Unitarity

A Picture of Unitarity

Gauge Portal Dark Matter

This model is characterized by the Lagrangian

$$\mathcal{L}_{DM} \supset \mathbf{g'} \bar{\chi} \gamma^{\mu} \gamma_5 Z'_{\mu} \chi - \lambda_{\chi} \bar{\chi} \Phi \chi$$

$$\mathcal{L}_{gauge} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{\sin \delta}{2} Z'_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{L}_{Higgs} \supset |D_{\mu} \Phi|^2 + V (H, \Phi; \lambda_1, \lambda_2, \lambda_3)$$

With breaking of the new symmetry by

$$\Phi = \frac{1}{\sqrt{2}}(\mathbf{u} + \phi^0)$$

Colored Scalars and Dark Matter

In a SUSY-inspired model, we add

$$\tilde{u}_R = (\tilde{u}_R, \tilde{c}_R, \tilde{t}_R)$$

And the Lagrangian terms

$$\mathcal{L} \supset \frac{1}{2} M_{\chi} \bar{\chi} \chi + \frac{1}{2} M_{\tilde{u}}^{2} \tilde{u}^{*} u + \lambda_{\text{dark}} \tilde{u}^{*} \bar{\chi} P_{R} u$$

This introduces the new parameter and scales

$$\lambda_{\mathrm{dark}}, M_{\chi}, M_{\tilde{u}}$$

Dirac Dark Matter

Direct Detection

Majorana Dark Matter

8/5/2016 Cohen, Golling, Hance, Henrichs, William Shepherd, NBIA Padhi, Wacker [arXiv:1311.6480]

True FCC Reach

Strong Couplings and Bound States

- All of this analysis has focused on the case of very strong couplings to get high allowed mass
- These large couplings can also lead to other effects that may be important
 - Sommerfeld enhancements
 - Dark matter bound states

Yukawa Potential Bound States

$$V(r) = \alpha \frac{e^{-m_{\text{med}}r}}{r}$$
 $T_{freeze} \sim \frac{m_{\chi}}{20}$

Cosmological Rates

$$\Delta = \frac{m\alpha^2}{4}$$

↑↓ and ↑↑ bound states

Bethe-Salpeter Equation

- States that are strongly bound enough to matter will have momenta high enough to require relativistic treatment
- If ladder diagrams are the dominant contribution to the binding the Bethe-Salpeter equation describes the physics

Relativistic Corrections

- States with binding energies of M/10 or larger require relativistic corrections to the coupling of a factor of 2 or more
- This will be an important shift in the cosmological implications of strong coupling

Outlook

- Perturbativity arguments can be made fully rigorous through unitarity considerations
- These unitarity bounds provide strong constraints on dark matter parameters
- Combined with collider searches we will be able to place strong limits on WIMPs
- Models with strong coupling like these may already be affected by new phenomena due to bound state formation
 - Investigations of cosmological impact of bound state dynamics are in progress