ATLAS search for the SM Higgs boson decaying to bb

Patricia Conde Muíño on behalf of the ATLAS Collaboration

- Higgs boson observed & measured mainly in bosonic channels (yy, WW, ZZ)
 Compatible with SM
- ≻ H→bb: largest BR in the SM (~58%)
 Constrain total width and measure absolute couplings
 - Probe the Higgs couplings to quarks
- Evidence of fermionic decays in Run 1:
 - $H \rightarrow \tau \tau$: 5.5σ (expected 5σ)
 - H \rightarrow bb: 2.6 σ (expected 3.7 σ)
- > Run 1 signal strength for $H \rightarrow bb$:

 $\mu_{bb}^{CMS+ATLAS} \!=\! 0.70^{+0.29}_{-0.27}$

ATLAS+CMS Run 1 signal strength

- Explore non-dominant production modes
- Vector boson fusion + photon (VBF search)
 - Use photon to trigger
 - bbyjj non-resonant bckg. suppressed by ~10×
- ➢ Previous inclusive VBF (H→bb) limits:

ATLAS: obs/expect. upper limit : 4.4/5.4 × SM CMS Run 1 obs/expect. upper limit: 5.5/2.5 × SM CMS Run 2 (2015)

obs/expect. upper limit: $3.0/5.0 \times SM$

> Associated production with W or Z

(VH search) Trigger on

P. Conde Muíño

decay proton H \overline{b} Z ICHEP16, Chicago, 4th Aug 16

VH searches: 3 channels

Two jets anti-kT with R=0.4 P_T^{j1}>45 GeV p_T^{j2}>20 GeV

Improved b-tagging with respect to Run 1:

> Eff: 70%, light jet rejection: 380, charm rejection: 12

Analysis categories:
 2/3 jets (0/1lepton)
 2/≥3jets (2lept.)
 P_⊥^V </>> 150 GeV (2lept)

Main backgrounds

Data VHbb Diboson

tt

Single top

Uncertainty Pre-fit background

W+(bb,bc,cc,bl) Z+(bb,bc,cc,bl)

Multijet

Dominant backgrounds dependent on channel \succ

Z+bjets dominates in 0, 2 lepton channels

Top quark and W+jets in 1 lepton channel

Multi-jet:

negligible in 0/2 lepton channels after anti-QCD cuts

Data-driven in 1 lepton channel

2 leptons

Boosted decision tree (BDT)	Variable	0-lepton	1-lepton	2-16
Combine many different variables	$\frac{p_{\rm T}^V}{p_{\rm T}^V}$		×	
Trained in 8 categories: 3 lepton 2/3	$E_{\mathrm{T}}^{\mathrm{mass}}$	×	×	
indified in o caregories: 5 lepton, 275	$p_{T_{h_2}}$	×	×	
jets, low/high p _r * bin (2 lepton channel)	$p_{\mathrm{T}}^{\sigma_2}$	×	×	
	m_{bb}	×	×	
> Most discrimination from m_{L} and $\Delta R(b_1, b_2)$	$\Delta R(b_1, b_2)$	×	×	
$rac{}{}$ 500	$ \Delta\eta(b_1,b_2) $	×		
	$\Delta \phi(V, bb)$	×	×	
$\bigcup_{\alpha} 450 = 1000 \text{ Jm}$	$ \Delta\eta(V,bb) $			
$\mathbf{E}^{400} = \mathbf{J}^{50} = \mathbf{J}^{50}$	H_{T}	×		
³⁵⁰ 2 tags, 2 jets, p ^v ₁ > 120 GeV	$\min_{W}[\Delta\phi(\ell,b)]$		×	
300 - · · · · · · · · · · · · · · · · · ·	$m_{\rm T}^{\prime\prime}$		×	
250	m_{ll}			
	m _{Top}		×	
	$ \Delta Y(V,H) $		×	
		Only	y in 3-jet ev	vents
100 Data 2012	$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	
	m_{bbj}	×	×	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\Delta R(b_1, b_2)$				

> New in run 2: $m_{T_{OD}}$, $|\Delta Y(V,H)| \rightarrow +7\%$ in sensitivity

2-lepton

х

×

× ×

×

× × ×

×

×

× ×

Combined fit

> Combined signal strength with 13.2 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV

$$\mu_{VH, H \to bb} = 0.21^{+0.51}_{-0.50}$$

Systematic and statistical uncertainties of combination the same size

Dominant systematics from b-tagging and background normalization & modelling (W+jets, Z+jets, top)

 Fit cross checked with di-boson signal (WZ+ZZ with Z→bb)

Observed significance: 3.2 σ $\mu_{VZ} = 0.91 \pm 0.17(stat)^{+0.32}_{-0.23}(sys)$

VBF+y search

Trigger:

L1 trigger: single photon ($p_{\tau} > 25 \text{ GeV}$)

High level trigger: 4 jets p_{τ} > 35 GeV, m_{ii} > 700 GeV

Selection:

Tight ID photon, p_T > 30 GeV

4 jets with p. > 40 GeV

2 central ($|\eta|$ <2.5) b-tagged jets

p₁(bb system) > 80 GeV

Non b-tagged jets: m_{ii}> 800 GeV

BDT discriminant

Built with variables uncorrelated to m_{bb} $\Delta R(jet, \gamma), m_{jj}, \Delta \eta_{jj}, H_T^{soft}$, jet width, γ centrality, $p_T^{balance}$ Define 3 regions with different S/B Fit m_{bb} in these 3 regions

VBF+y results

- > Use a profile likelihood fit
- Non resonant background estimated with 2nd order polinomial fit in m_{bb} sideband
- Fit tested searching for Z→bb + γ production:

Expected 95% CL limit: $1.8^{+0.7}_{-0.5}$ Observed: 2.0

 > Observed signal strength in the Higgs search: μ_{H,VBF+γ}=-3.9^{+2.8}_{-2.7}
 > Expected 95% CL limit: 6.0^{+2.3}_{-1.7}

 Observed 95% CL limit: 4×(σ×BR)SM

Result	$H(\to b\bar{b})+\gamma jj$	$Z(\to b\bar{b})+\gamma jj$
Expected significance	0.4	1.3
Expected <i>p</i> -value	0.4	0.1
Observed <i>p</i> -value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	1.8 + 0.7 - 0.5
Observed limit	4.0	2.0
Observed signal strength μ	-3.9 $^{+2.8}_{-2.7}$	0.3 ±0.8

 \succ

Low BDT score region:

High BDT score region

P. Conde Muíño

- The search for the Higgs decays to b-quarks is essential to probe the nature of the Higgs boson
 - Measure couplings to down-type quarks
 - Constraint total width
- Presented very hot new ATLAS results on the search for $H{\rightarrow}bb$
- > In associated production with a W or a Z 13.2 fb⁻¹ of 13 TeV pp collisions Expected (observed) significance: 1.92 (0.42) Signal strength: $\mu_{VH,H\rightarrow bb} = 0.21^{+0.51}_{-0.50}$

In vector boson fusion + photon production

- More details in poster 1115 (A. Buzatu): ATLAS VH(bb) Run II Search
- First VBF+y result!

12.5 fb⁻¹ of 13 TeV pp collisions Expected (observed) 95% CL limit: $6^{+2.3}_{-1.7}$ (4) times the SM expectation Signal strength: $\mu_{H, VBF+\gamma} = -3.9^{+2.8}_{-2.7}$

Acknowledgements

> OE, FCT-Portugal, CERN/FIS-NUC/0005/2015

Systematic uncertainties for VH analysis

Signal

	Signal	
Cross section (scale)	$0.7\% (q\overline{q}), 27\% (gg)$	
Cross section (PDF) 1.9% $(q\bar{q} \rightarrow WH)$, 1.6% $(q\bar{q} \rightarrow ZH)$, 5		, 5% (g
Branching ratio	1.7 %	
Acceptance (scale)	1.4%-5%	
3-jet acceptance (scale)	1.4%-4.7%	=
$p_{\rm T}^{V}$ shape (scale)	S	_
Acceptance (PDF)	0.3%-0.7%	
$p_{\rm T}^V$ shape (NLO EW correction)	S	
Acceptance (parton shower)	4%-7.5%	

- Simulated backgrounds: Normalisation, acceptance differences between regions, shapes
- Example for W+jets:

W+jets			
Wl normalisation	32%		
Wcl normalisation	37%		
Wbb normalisation	Floating		
 Wbl-to-Wbb ratio	17% (0-lepton) and 31% (1-lepton)		
Wbc-to-Wbb ratio	42% (0-lepton) and 21% (1-lepton)		
Wcc-to-Wbb ratio	17% (0-lepton) and 31% (1-lepton)		
2-to-3 jet ratio	23%		
0-to-1 lepton ratio	17%		
$p_{\rm T}^V, m_{bb}$	S		

- Luminosity: 2.1% for 2015, 3.7% for 2016
- > Jet energy scale, b-tagging:

many sources \rightarrow decomposed in uncorrelated components

> e, μ reconstruction, identification, trigger, energy/p_{τ} scale: small impact

Uncertainties on simulated backgrounds (VH analysis)

Z+jets			
Zl normalisation 18%			
Zcl normalisation	23%		
Zbb normalisation	Floating		
Zbc-to-Zbb ratio	14-27%		
Zcc-to-Zbb ratio	7-31%		
Zbl-to-Zbb ratio	15-38%		
0-to-2 lepton ratio	26%		
2-to-3 jet ratio	28% (0-lepton) and 25% (2-lepton)		
$p_{\rm T}^V, m_{bb}$	S		
	W+jets		
Wl normalisation	32%		
Wcl normalisation	37%		
Wbb normalisation	Floating		
Wbl-to-Wbb ratio	17% (0-lepton) and 31% (1-lepton)		
Wbc-to-Wbb ratio	42% (0-lepton) and 21% (1-lepton)		
Wcc-to-Wbb ratio	17% (0-lepton) and 31% (1-lepton)		
2-to-3 jet ratio	23%		
0-to-1 lepton ratio	17%		
$p_{\rm T}^V, m_{bb}$	S		
$t\bar{t}$ (all are decorrelated between the 0+1 and 2-lepton channels)			
$t\bar{t}$ normalisation	Floating		
2-to-3-jet ratio	9% (0+1-lepton) and 24% (2-lepton)		
$p_{\rm T}^V, m_{bb}$	S		

Single top				
Cross section	4.4% (s-channel), 4.6% (t-channel), 6% (Wt)			
Acceptance 2-jet	16% (t-channel), 25% (Wt)			
Acceptance 3-jet 19% (t-channel), 32% (Wt)				
$m_{bb}, p_{\mathrm{T}}^{V}$	S (p_T^V uncorrelated between 2 and 3-jet channels Wt)			
	ZZ			
Normalisation	20%			
0-to-2 lepton ratio	30%			
2-to-3 jet ratio	19 %			
$m_{bb}, p_{\mathrm{T}}^{V}$	S (correlated with WZ uncertainties)			
WZ				
Normalisation	26%			
2-to-3 jet ratio	14% (0-lepton) and 11% (1-lepton)			
0-to-1 lepton ratio	12%			
$m_{bb}, p_{\mathrm{T}}^{V}$	S (correlated with ZZ uncertainties)			
WW				
Normalisation 25%				
Multi-jet				
Need final numbers				

Impact of the systematic uncertainties on signal strength for VH(bb) search

P. Conde Muíño

ICHEP16, Chicago, 4^{th} Aug 16

Run 2 VH(bb) selection

Selection	0-lepton	1-lepton	2-lepton	
Trigger	$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss}$ (μ sub-channel)		
	_	lowest unprescaled single lepton		
Leptons	0 loose lepton	1 tight lepton	2 loose leptons	
			$(\geq 1 \text{ medium lepton})$	
Lepton pair	-	-	Same flavour	
			opposite-charge for $\mu\mu$	
$E_{ m T}^{ m miss}$	> 150 GeV	> 30 GeV (e sub-channel)	-	
m _{ll}	-	-	$71 < m_{ll} < 121 \text{ GeV}$	
S _T	> 120 (2 jets), >150 GeV (3 jets)	-	-	
Jets	≥ 2 signal jets			
<i>b</i> -jets	2 b-tagged signal jets			
Leading jet $p_{\rm T}$	> 45 GeV			
$\min \Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet})$	> 20°	-	-	
$\Delta \phi(E_{\rm T}^{\rm miss},h)$	> 120°	-	-	
$\Delta \phi$ (jet1,jet2)	< 140°	-	-	
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{{\rm T},trk}^{\rm miss})$	< 90°	-	-	
$p_{\rm T}^{\rm V}$ regions	[0, 150] GeV (2-lepton), [150, ∞] GeV			

Table 1: Summary of the event selection in the 0-, 1- and 2-lepton channels.

VBF systematics

Uncertainty source	Uncertainty $\Delta \mu$	
Non-resonant background uncertainty in medium-BDT region	0.22	
Non-resonant background uncertainty in high-BDT region	0.21	
Non-resonant background uncertainty in low-BDT region	0.17	
Parton shower uncertainty on $H + \gamma$ acceptance	0.16	
QCD scale uncertainty on $H + \gamma$ cross section	0.13	
Jet energy uncertainty from calibration across η	0.10	
Jet energy uncertainty from flavour composition in calibration	0.09	
Integrated luminosity uncertainty	0.08	

VBF BDT variables

- $\Delta R(\text{jet}, \gamma)$: angular separation between one of the selected jets and the photon, with specific cases for the p_{T} -ordered jets j_1 and j_2 , and for p_{T} -ordered *b*-jets b_1 and b_2 ;
- *m_{jj}*: invariant mass of the VBF-jet pair;
- $\Delta \eta_{jj}$: separation in η between the VBF jets;
- jet width for the VBF jets, sensitive to differences between quark and gluon jets [29];
- $p_{\rm T}^{\rm balance}$: transverse-momentum balancing variable for the selected final state objects:

$$p_{\rm T}^{\rm balance} = \frac{(p^{b_1} + p^{b_2} + p^{j_1} + p^{j_2} + p^{\gamma})_{\rm T}}{p_{\rm T}^{b_1} + p_{\rm T}^{b_2} + p_{\rm T}^{j_1} + p_{\rm T}^{j_2} + p_{\rm T}^{\gamma}}$$
(1)

For signal events produced via electroweak processes, where there is minimal QCD radiation, the final state objects should be more balanced than in the background. For non-resonant multijetback-ground, where additional radiation is more likely and more final state objects are expected, the final state should be more unbalanced than in the signal electroweak process.

• centrality of the photon with respect to the VBF jets:

centrality(
$$\gamma$$
) = $\left| \frac{y_{\gamma} - \frac{y_{j_1} + y_{j_2}}{2}}{y_{j_1} - y_{j_2}} \right|$ (2)

• $H_{\rm T}^{\rm soft}$: scalar $p_{\rm T}$ sum over the track-jets with $p_{\rm T} > 7$ GeV. The track-jets used to calculate $H_{\rm T}^{\rm soft}$ are

Search for a CP-odd Higgs boson A →Zh→Zbb with 3.2 fb⁻¹ of pp collisions at 13 TeV:

