Non-perturbative determinations of B-meson decay constants and semi-leptonic form factors

Oliver Witzel
Higgs Centre for Theoretical Physics

THE UNIVERSITY
of EDINBURGH

ICH EP 2016
Chicago, IL, USA, August 5 2016
RBC- and UKQCD collaborations

BNL/RBRC
- Mattia Bruno
- Tomomi Ishikawa
- Taku Izubuchi
- Chulwoo Jung
- Christoph Lehner
- Meifeng Lin
- Hiroshi Ohki
- Shigemi Ohta (KEK)
- Amarjit Soni
- Sergey Syritsyn

Columbia U
- Ziyuan Bai
- Norman Christ
- Luchang Jin
- Christopher Kelly
- Bob Mawhinney
- Greg McGlynn
- David Murphy
- Jiqun Tu

U Edinburgh
- Peter Boyle
- Guido Cossu
- Luigi Del Debbio
- Richard Kenway
- Julia Kettle
- Ava Khamseh
- Antonin Portelli
- Brian Pendleton
- Oliver Witzel
- Azusa Yamaguchi

U Southampton
- Jonathan Flynn
- Vera Gülpers
- James Harrison
- Andreas Jüttner
- Andrew Lawson
- Edwin Lizarazo
- Chris Sachrajda
- Francesco Sanfilippo
- Matthew Spraggs
- Tobias Tsang

CERN
- Marina Marinkovic

U Connecticut
- Tom Blum

FZ Jülich
- Taichi Kawanai

KEK
- Julien Frison

Peking U
- Xu Feng

U Plymouth
- Nicolas Garron

York U (Toronto)
- Renwick Hudspith
RBC- and UKQCD collaborations

BNL/RBRC
Mattia Bruno
Tomomi Ishikawa
Taku Izubuchi
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni
Sergey Syritsyn

Columbia U
Ziyuan Bai
Norman Christ
Luchang Jin
Christopher Kelly
Bob Mawhinney
Greg McGlynn
David Murphy
Jiqun Tu

U Edinburgh
Peter Boyle
Guido Cossu
Luigi Del Debbio
Richard Kenway
Julia Kettle
Ava Khamseh
Antonin Portelli
Brian Pendleton
Oliver Witzel
Azusa Yamaguchi

U Southampton
Jonathan Flynn
Vera Gülpers
James Harrison
Andreas Jüttner
Andrew Lawson
Edwin Lizarazo
Chris Sachrajda
Francesco Sanfilippo
Matthew Spraggs
Tobias Tsang

CERN
Marina Marinkovic

U Connecticut
Tom Blum

FZ Jülich
Taichi Kawanai

KEK
Julien Frison

Peking U
Xu Feng

U Plymouth
Nicolas Garron

York U (Toronto)
Renwrick Hudspith
Where can lattice QCD contribute?

CKM unitarity triangle fit

- Neutral B-meson mixing B_B, ξ

- Exclusive semi-leptonic decays e.g.

 $B \rightarrow \pi \ell \nu_\ell \Rightarrow |V_{ub}|$
 $B \rightarrow D \ell \nu_\ell \Rightarrow |V_{cb}|$

 with $\ell = e, \mu, \tau$

- Tension between incl. and excl. determinations

Help to explore tensions: $R_{D(*)}$

$\mathcal{B}(B \to D^{(*)}\tau\nu)$

Tension with SM seems to persist

Very preliminary & unofficial average including new LHCb & Belle results

$R(D^*) = 0.390 \pm 0.047$

$R(D) = 0.322 \pm 0.021$

SM predictions from PRD 85 (2012) 094025

Careful averaging needed to account for statistical and systematic correlations

Consistent with latest lattice results

Figure: [Talk by T. Gershon at MIAPP June 2015]
Our RHQ Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - Nonperturbative tuning of RHQ parameters [PRD 86 (2012) 116003]
 - Decay constants f_B and f_{B_s} [PRD 91 (2015) 054502]
 - $B \rightarrow \pi \ell \nu$ and $B_s \rightarrow K \ell \nu$ form factors [PRD 91 (2015) 074510]
 - $g_{B^*B\pi}$ coupling constant [PRD 93 (2016) 014510]
 - $B^0-\overline{B^0}$ mixing
 - Rare B decays [arXiv:1511.06622]

- f_B, f_{B_s}, and semi-leptonic form factors
 - $O(a)$ improvement at 1-loop and mostly nonperturbative renormalization
 - Correction factors and coefficients computed at 1-loop

- B mixing
 - Tree-level $O(a)$ improvement
 - Perturbative or mostly nonperturbative renormalization
2+1 Flavor Domain-Wall Iwasaki ensembles

<table>
<thead>
<tr>
<th>L</th>
<th>a^{-1} (GeV)</th>
<th>$a m_l$</th>
<th>$a m_s$</th>
<th>M_π (MeV)</th>
<th># configs.</th>
<th># sources</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1.784</td>
<td>0.005</td>
<td>0.040</td>
<td>338</td>
<td>1636</td>
<td>1</td>
<td>[PRD 78 (2008) 114509]</td>
</tr>
<tr>
<td>24</td>
<td>1.784</td>
<td>0.010</td>
<td>0.040</td>
<td>434</td>
<td>1419</td>
<td>1</td>
<td>[PRD 78 (2008) 114509]</td>
</tr>
<tr>
<td>32</td>
<td>2.383</td>
<td>0.004</td>
<td>0.030</td>
<td>301</td>
<td>628</td>
<td>2</td>
<td>[PRD 83 (2011) 074508]</td>
</tr>
<tr>
<td>32</td>
<td>2.383</td>
<td>0.006</td>
<td>0.030</td>
<td>362</td>
<td>889</td>
<td>2</td>
<td>[PRD 83 (2011) 074508]</td>
</tr>
<tr>
<td>32</td>
<td>2.383</td>
<td>0.008</td>
<td>0.030</td>
<td>411</td>
<td>544</td>
<td>2</td>
<td>[PRD 83 (2011) 074508]</td>
</tr>
<tr>
<td>48</td>
<td>1.730</td>
<td>0.00078</td>
<td>0.0362</td>
<td>139</td>
<td>40</td>
<td>81/1*</td>
<td>[PRD 93 (2016) 074505]</td>
</tr>
<tr>
<td>64</td>
<td>2.359</td>
<td>0.000678</td>
<td>0.02661</td>
<td>139</td>
<td>—</td>
<td>—</td>
<td>[PRD 93 (2016) 074505]</td>
</tr>
<tr>
<td>48</td>
<td>~ 2.7</td>
<td>0.002144</td>
<td>0.02144</td>
<td>~ 250</td>
<td>> 50</td>
<td>24</td>
<td>[in progress]</td>
</tr>
</tbody>
</table>

* All mode averaging: 81 “sloppy” and 1 “exact” solve [Blum et al. PRD 88 (2012) 094503]

▲ Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]

▲ a: ~ 0.11 fm, ~ 0.08 fm, ~ 0.07 fm
Up, down, and strange quarks

- Domain-wall fermions with same parameters as in the sea-sector (domain-wall height M_5, extension of 5th dimension L_s)
- Unitary and partially quenched quark masses
- Strange quarks at/near physical the physical value

Bottom quarks

- Builds upon Fermilab approach [El-Khadra et al. PRD 55 (1997) 3933]
- Allows to tune the three parameters (m_0a, c_P, ζ) nonperturbatively [PRD 86 (2012) 116003], recently re-tuned to update a^{-1} values
- Heavy quark mass is treated to all orders in $(m_ba)^n$
- Has a smooth continuum limit
Decay constants

[PRD 91 (2015) 054502]

$\Phi^\text{en}_{B_0} / M_{B_0}^{3/2} = 0.0369(11) \rightarrow f_{B^0} = 199.5(6.2)\text{MeV}$

$\Phi^\text{en}_{B_s} / M_{B_s}^{3/2} = 0.0369(11) \rightarrow f_{B^-} = 195.6(6.4)\text{MeV}$

$\chi^2/\text{dof} = 0.30\ [2] \ p\text{-value} = 74\%$

$\Phi^\text{en}_{B_{s}} / f_{B_{s}} = 1.207(14) \rightarrow f_{B_{s}} / f_{B^+} = 1.197(13)$

$\Phi^\text{en}_{B_{s}} / f_{B_{s}} = 1.233(15) \rightarrow f_{B_{s}} / f_{B^+} = 1.223(14)$

$\chi^2/\text{dof} = 0.37\ [2] \ p\text{-value} = 69\%$

$\Box \ f_{B^0} = 199.5(12.6)\text{MeV}$

$\Box \ f_{B^+} = 195.6(14.9)\text{MeV}$

$\Box \ f_{B_s} = 235.4(12.2)\text{MeV}$

$\Box \ f_{B_s} / f_{B^0} = 1.197(50)$

$\Box \ f_{B_s} / f_{B^+} = 1.223(71)$
Semi-leptonic form factors: $B \rightarrow \pi \ell \nu$ and $|V_{ub}|$

[PRD 91 (2015) 074510]

- In good agreement with existing and new FNAL/MILC result
- Result agrees with value obtained from CKM unitarity
$B^* B\pi$ coupling constant

[PRD 93 (2016) 014510]

- Strong coupling $g_{B^* B\pi}$
 parametrizes $\langle B\pi | B^* \rangle$

- Related to LEC g_b of HMχPT

 $$g_b = g_{B^* B\pi} \cdot f_\pi / (2M_B)$$

- Not accessible experimentally
 but needed to determine e.g. f^B_π

- First determination at physical b–quark mass
Outlook

- Update/improve determinations for decay constants f_B, f_{B_s} as well as semi-leptonic-form factors for $B \rightarrow \pi \ell \nu$ ($\Rightarrow |V_{ub}|$) and $B_s \rightarrow K \ell \nu$
- Two new ensembles adding physical pions and a third lattice spacing

- Include GIM suppressed decays (FCNC) in measurements (short distance contributions)

- Simulate charm quarks to determine $B(s) \rightarrow D^*_s \ell \nu$ form factors
GIM suppressed semi-leptonic decays e.g. $B_s \rightarrow \phi \ell^+ \ell^-$

- Full basis contains 20 operators but at short distance only $O_7^{(')}$, $O_9^{(')}$, and $O_{10}^{(')}$ contribute
- Short distance contributions only!
 (Issues with factorization of long distance charm resonances [arXiv:1406.0566])
- Form factors: f_V, f_{A1}, f_{A2}, f_{A2}, f_{T1}, f_{T2}, f_{T3}
First results for $B_s \rightarrow \Phi \ell^+ \ell^-$: f_{A0} and f_{T1}

- $24^3 \times 64$ ensemble with $a^{-1} = 1.784$ GeV and $am_l = 0.005$ ($M_\pi \approx 338$ MeV)

- Data on further ensembles exists, but renormalization factors are missing
$B(s) \rightarrow D^{(*)}_{(s)}$ form factors

- Same setup as for $B \rightarrow \pi \ell \nu$ or $B_s \rightarrow K \ell \nu$
- Addition form factors for vector final state (stable)

Charm quarks

- Möbius DWF optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
- $M_5 = 1.6, L_s = 12$
- Discretization errors well under control for $am_c \leq 0.40$
 - On coarse ($a^{-1} = 1.784$ GeV) ensembles we simulate just below m_c^{phys}
 - Simulate 3 or 2 charm-like masses and then extrapolate/interpolate
 - Linear extrapolation is small and benign; interpolation is safe
Charm extrapolation

- Small extrapolation for $a^{-1} = 1.784$ GeV ensembles
- Interpolation for $a^{-1} \geq 2.383$ GeV ensembles
- Analysis on f_D, f_{Ds}, and f_{Ds}/f_D almost finalized
First results for $B_s \rightarrow D_s \ell \nu$

$24^3 \times 64$ ensemble with $a^{-1} = 1.784$ GeV and $am_l = 0.005$ ($M_\pi \approx 338$ MeV)

- Data on further ensembles exists, but renormalization factors are missing
Resources and Acknowledgments

- Simulations on 24^3, 32^3, and the 48^3 ensemble with physical pions
 - **USQCD**: kaon, J/psi, Ds, Bc, and pi0 cluster at Fermilab
 - 12s at Jlab
 - **RBRC/BNL and Columbia U**: small local clusters
- Simulations on the $a^{-1} \sim 2.7$ GeV 48^3 ensemble
 - **ARCHER UoE**: Cray XC30
 - **DiRAC UoE**: BG/Q