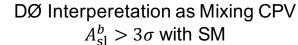


CP VIOLATION IN B MESON DECAYS USING l+JETS $t\bar{t}$ IN 8 TEV ATLAS DATA

Motivation

CPV expected in b-quark decays in $t\bar{t}$ final states:

Mixing :: $P(b \to \overline{b} \to l^+ X)$ vs $P(\overline{b} \to b \to l^- X)$


Direct :: $P(b \to l^+ X)$ vs $P(\overline{b} \to l^- X)$

LHC provides $B_{d,s}^0$ decays from $t\bar{t}$: Alternative source,

kinematics and energy regime to b-factories

Very clean technique for measuring CPV in $B_{d,s}^0$ decays

Top provides b-charge at production Sensitivity to A_{dir}^{bl} , A_{dir}^{cl} , A_{dir}^{bc}

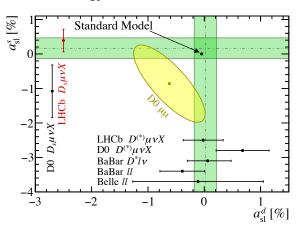


Figure 1: Overview of the most precise measurements of $a_{\rm sl}^d$, $a_{\rm sl}^s$ (related to $A_{\rm sl}^b$), with DØ for comparison [1]

DØ Interperetation as Direct CPV $A_{ m dir}^{bl}{\sim}0.3\%$, $A_{ m dir}^{cl}{\sim}1.0\%$

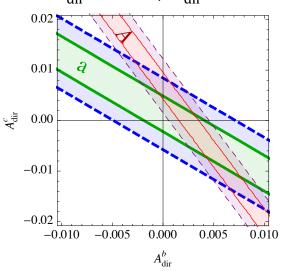


Figure 2: Required values of $A_{\rm dir}^{bl}$, $A_{\rm dir}^{cl}$ to satisfy the DØ measurement assuming SM $A_{\rm sl}^{b}$ [2]

Same Sign (SS)

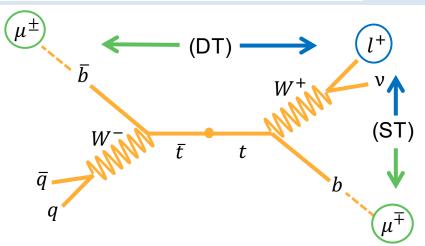
$$t \to l^+ \nu (b \to \bar{b}) \to l^+ l^+ X$$

$$t \to l^+ \nu (b \to c) \to l^+ l^+ X$$

$$t \to l^+ \nu (b \to \bar{b} \to c\bar{c}) \to l^+ l^+ X$$

Opposite Sign (OS)

$$t \to l^+ \nu \ b \to l^+ l^- X$$


$$t \to l^+ \nu \ (b \to \overline{b} \to \overline{c}) \to l^+ l^- X$$

$$t \to l^+ \nu \ (b \to c\overline{c}) \to l^+ l^- X$$

$$A^{ss(os)}(A_{\text{mix}}, A_{\text{dir}}) = \frac{P(b \to l^{+(-)}) - P(\overline{b} \to l^{-(+)})}{P(b \to l^{+(-)}) + P(\overline{b} \to l^{-(+)})}$$

$$A^{ss(os)} = \frac{\frac{N^{++(-)}}{N^{+}} - \frac{N^{--(+)}}{N^{-}}}{\frac{N^{++(-)}}{N^{+}} + \frac{N^{--(+)}}{N^{-}}}$$

Figure 3: Decay topology with SMT muons, showing 'SameTop' (ST) and 'DifferentTop' (DT) event types

Existing limits Standard model predicts: $A^q_{\rm mix} < 10^{-4}_{\rm [4]}$ $A^q_{\rm dir} < 10^{-7}_{\rm [3]}$ $A^{ss}, A^{os} < 10^{-4}_{\rm [3]}$ Current limits (indirect): $A^{ss}, A^{os} < 10^{-3}_{\rm [3]}$ $A^q_{\rm mix} < 10^{-3}_{\rm [5]}$ $A^{cl}_{\rm dir} < 1.2 \times 10^{-2}_{\rm [2]}$ $A^{cl}_{\rm dir} < 6.0 \times 10^{-2}_{\rm [2]}$ $A^{bc}_{\rm dir} \rightarrow {\rm None}_{\rm [3]}$

Figure 4: The Soft Muon Tagger (SMT)[6] MUON SPECTROMETER MS Track CALORIMETERS.

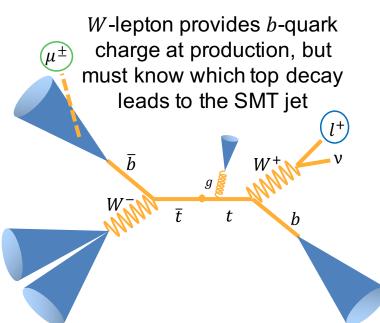
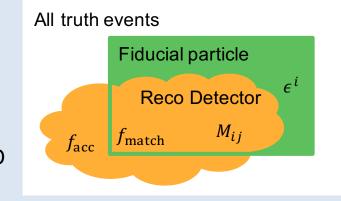


Figure 5: Reconstructed event, four jets, a lepton and missing energy (v)


Kinematic Fitting using a likelihood approach [7]

SameTop (ST) or DifferentTop (DT)? Purity $\sim 80\%$ [7]

- KLFitter permutes reconstructed jets between four possible positions in *l*+jets decay
 - W-boson light jets and b-jets
- Transfer functions account for measurement resolutions
- Breit-Wigner functions provide constraints
 - $BW(m_{lv}|M_W)$, $BW(m_{lv}|M_t)$
 - Uses B-Tagging information in jet assignment
- 16 fitted object kinematics used to minimise likelihood for each jet permutation
 - Energy of four quarks and lepton
 - Missing energy assigned to a neutrino
 - Angular properties of four quarks

Unfolding

- 1. Count events
- $(N^{++}, N^{--}, N^{-+}, N^{+-})$
- 2. Remove backgrounds, mistags
- 3. Correct for ST/DT mis-ID
- 4. Unfold to particle-level fiducial volume

$$N_{\mathrm{fid}}^{i} = \frac{1}{\epsilon^{i}} \cdot \sum_{j} M_{ij}^{-1} \cdot f_{\mathrm{match}}^{j} \cdot f_{\mathrm{acc}}^{j} \left(N_{\mathrm{reco}}^{j} - N_{\mathrm{bkg}}^{j} \right)$$
 $i = \text{Truth-bins}$ $j = \text{Reco-bins}$

$$A^{ss(os)} = \sum_{i} r_i A_{\text{mix,dir}}^q$$

 $A^{ss(os)}$ are simple functions of the direct and mixing CPV parameters

Predicted Sensitivity at 8 TeV (Statistical)[3]

$$A_{
m mix}^q < 10^{-2}_{[3]}$$
 $A_{
m dir}^{bl} < 1.0 \times 10^{-2}_{[3]}$ $A_{
m dir}^{cl} < 1.0 \times 10^{-2}_{[3]}$ $A_{
m dir}^{bc} \rightarrow 1.0 \times 10^{-2}_{[3]}$

LHC $t\bar{t}$ data provides a clean source of bquarks with unambiguous production charge
for CP violation studies.

Possible to measure CP violation asymmetries Sensitivity to direct CP violation parameters

