Search for Gluinos in Events with One Isolated Lepton, Jets and Large Missing Transverse <u>Momentum at $\sqrt{s}=13$ TeV with the ATLAS Detector</u>

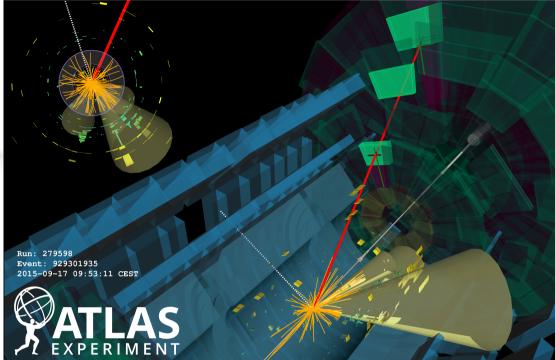
ICHEP 2016, Aug 3-10, Chicago

Benchmark signal: simplified SUSY model of gluino pair production

Only three free parameters: $m_{\tilde{g}}, m_{\tilde{\chi}_1^{\pm}}$ and $m_{\rm LSP}$ Two different scenarios considered in this search:

 $\rightarrow m_{\rm LSP}$ fixed to 60 GeV

 $\rightarrow m_{\tilde{\chi}_1^{\pm}}$ fixed to $(m_{\tilde{g}} + m_{\rm LSP})/2$ GeV

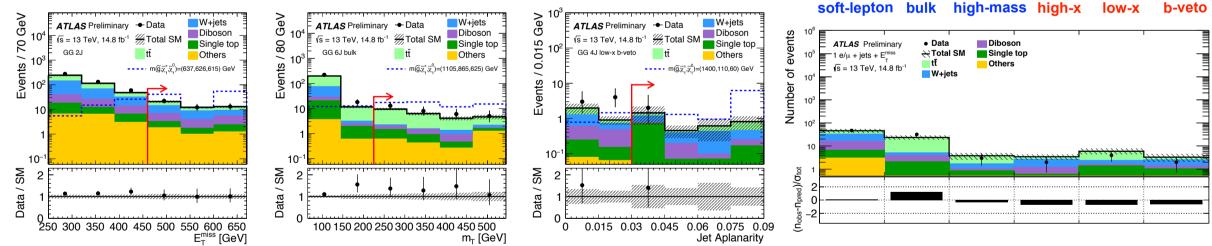

Lepton p_T used to exploit different SUSY mass spectra:

hard-lepton channel lepton p_T>35 GeV large gluino-LSP mass splittings

soft-lepton channel lepton p_T<35 GeV compressed SUSY mass spectra

1 lepton (e/μ) + jets + missing transverse momentum

<u>Muons:</u>	Electrons:	<u>Jets:</u>
p⊤>6 GeV, η <2.5	p _⊺ >7 GeV, η <2.5	p _T >30 GeV, η <2.8
Track Quality Small Impact Param. Isolation	Track & Calo Quality Small Impact Param. Isolation	anti- <i>k</i> ⊤ R=0.4 Pileup Suppression (77% eff. b-tagging)

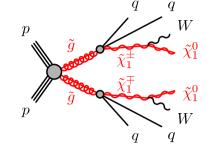

Run: 279598 Event: 929301935 2015-09-17 09:53:11 CEST
ΘΑΤΙ Δ ς
ATLAS

SR	GG 2J	GG 6J bulk	GG 6J high-mass	GG 4J low-x	GG 4J low-x b-veto	GG 4J high-x
$p_{\rm T}^{\ell}$ (GeV)	[7(6), 35]	> 35	> 35	> 7(6)	> 7(6)	> 35
- 1	for e (μ)			for $e(\mu)$	for $e(\mu)$	
N _{jet}	≥ 2	≥ 6	≥ 6	≥ 4	≥ 4	≥ 4
$p_{\rm T}^{\rm jet1}$ (GeV)	> 200	> 125	> 125	> 100	> 100	> 400
$p_{\rm T}^{\rm jet2,3}$ (GeV) $p_{\rm T}^{\rm jet4}$ (GeV)	> 30/-	> 30	> 30	> 100	> 100	> 30
$p_{\rm T}^{\rm jet4}$ (GeV)	-	> 30	> 30	> 100	> 100	[30, 100]
$p_{\rm T}^{\rm jet5,6}$ (GeV)	-	> 30	> 30	-	-	-
$N_{\rm b-jet}$	-	-	-	-	= 0	-
m _T (GeV)	> 100	> 225	> 225	> 125	> 125	> 475
$E_{\rm T}^{\rm miss}$ (GeV)	> 460	> 250	> 250	> 250	> 250	> 250
$m_{\rm eff}^{\rm inc}$ (GeV)	-	> 1000	> 2000	> 2000	> 2000	> 1600
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\rm inc}$	> 0.35	> 0.2	> 0.1	-	-	> 0.3
Jet aplanarity	-	> 0.04	> 0.04	> 0.06	> 0.03	-

GG 6J

Results

The observed data agree with the Standard Model background prediction in the signal regions. The largest deviation is a 1.1 standard deviation excess in a channel requiring a high- p_{T} lepton and six jets.

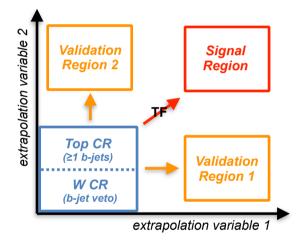


soft-lepton bulk high-mass high-x

GG 2J

onciepton		ign maoo	ingi-x		0 1010
ATLAS Preliminary	• Data	Diboson	I	I	

GG 4J



Analysis Strategy

The analysis is based on **14.8 fb**⁻¹ of ATLAS data at \sqrt{s} =13 TeV:

- → selecting events using missing transverse momentum triggers;
- \rightarrow requiring exactly one lepton (e/µ) in the final state.

Define Signal Regions (SR) to enhance a possible SUSY signal in the data over the Standard Model backgrounds. Main discriminating variables: transverse mass (m_T), "effective" mass (m_{eff}) , missing transverse momentum (E_T^{miss}) and aplanarity (Aplanarity).

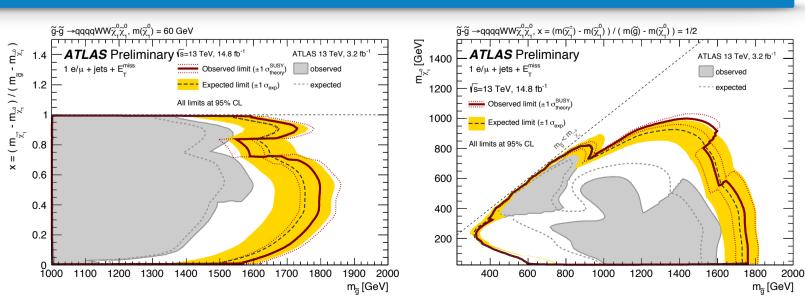
Main backgrounds: ttbar, W+jets

- → normalization fitted simultaneously to data in specific Control Regions (CR)
- → extrapolated to SR using MC-based Transfer Factors (TF)

Minor backgrounds: single top, diboson, Z+jets and ttV

→ estimated entirely using MC simulation

The final observable is the absolute number of events observed in each signal region.


Statistical Interpretation

Observed and expected events in each SR

Region (GG)	2J	6J bulk	6J high-mass	4J low-x	4J low-x b-veto	4J high-x
Observed events	47	32	3	4	2	2
Fitted background events	46 ± 7	24 ± 5	3.8 ± 1.2	6.0 ± 1.6	3.3 ± 1.2	3.4 ± 0.9
Fitted tr events	12.4 ± 3.5	17 ± 5	2.0 ± 0.9	3.4 ± 1.6	0.8 ± 0.4	0.7 ± 0.4
Fitted W+jets events	16.7 ± 3.2	1.2 ± 0.5	0.6 ± 0.4	0.7 ± 0.4	1.2 ± 0.7	1.4 ± 0.4
Fitted Z+jets events	2.9 ± 1.7	$0.04^{+0.07}_{-0.04}$	0.11 ± 0.09	0.11 ± 0.08	0.030 ± 0.030	0.040 ± 0.030
Fitted single top events	3.4 ± 2.8	2.0 ± 1.6	0.7 ± 0.6	1.2 ± 1.0	1.0 ± 0.9	0.6 ± 0.5
Fitted diboson events	9 ± 5	1.8 ± 1.5	$0.20^{+0.33}_{-0.20}$	$0.21^{+0.32}_{-0.21}$	$0.31^{+0.33}_{-0.31}$	0.6 ± 0.6
Fitted $t\bar{t}$ +V events	1.27 ± 0.12	1.72 ± 0.32	0.18 ± 0.06	0.27 ± 0.05	0.04 ± 0.010	0.18 ± 0.04

Model-independent upper limits and discovery p-values

Region	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	S_{exp}^{95}	CL_B	p(s = 0)
GG 2J	1.44	21.3	$20.2^{+6.8}_{-5.1}$	0.56	0.41
GG 6J bulk	1.49	22.1	$14.7^{+6.3}_{-4.2}$	0.89	0.11
GG 6J high-mass	0.35	5.1	$5.5^{+2.2}_{-1.4}$	0.40	0.90
GG 4J high-x	0.28	4.2	$5.2^{+2.2}_{-1.2}$	0.26	0.77
GG 4J low-x	0.37	5.5	$6.6^{+2.7}_{-1.7}$	0.28	0.83

Combined exclusion limits (95% CL) in the two gluino simplified models using for each model point the signal region with the best expected sensitivity. The exclusion limits by previous ATLAS analyses are shown as the grey area.

Stefano Zambito, Harvard University Reference: ATLAS-CONF-2016-054

