

Boosting Higgs-Pair Production inthe bbb Final State With Multivariate Techniques

J. K. Behr ¹ D. Bortoletto² J. Frost² N. P. Hartland² C. Issever² J. Rojo² ¹DESY ²University of Oxford

PROBING THE HIGGS POTENTIAL

- Shape of Higgs potential postulated ad-hoc, not derived from first principles
- Current measurements only probe potential around minimum
- Full potential accessible via Higgs self-couplings

Current measurements

- Trilinear coupling accessible via Higgs pair production
- Provides test of EWSB mechanism
- Sensitive to BSM physics

A central physics goal of the LHC, HL-LHC and future colliders

THE CHALLENGE

- HH cross-section is tiny in the SM: $\sigma^{\text{SM-LO}} \approx 3-4 \times 10^{-2} \text{ pb}$
- The largest Higgs decay mode is $b\bar{b}$: BR(H $\rightarrow b\bar{b}$) ≈ 0.57
- But $HH \rightarrow b\bar{b}b\bar{b}$ suffers overwhelming QCD multi-jets background

Process	Generator	$N_{ m evt}$	$\sigma_{ m LO}$ (pb)	K-factor
$pp \rightarrow hh \rightarrow 4b$	MG5_aMC@NLO	1M	$6.2 \cdot 10^{-3}$	2.4 (NNLO+NNLL)
$pp \rightarrow b\bar{b}b\bar{b}$	SHERPA	3M	$1.1 \cdot 10^3$	1.6 (NLO)
$pp o b ar{b} jj$	SHERPA	30M	$2.7 \cdot 10^{5}$	1.3 (NLO)
$pp \rightarrow jjjj$	SHERPA	30M	$9.7 \cdot 10^6$	0.6 (NLO)

- LHC Run 2 and 3: $\int \mathcal{L} = 300 \text{ fb}^{-1}$ and pile-up between 40-60
- HL-LHC: $\int \mathcal{L} = 3000 \text{ fb}^{-1}$ and levelled pile-up of ≈ 140
- Previous studies for $b\bar{b}b\bar{b}$ final state pessimistic: S/ $\sqrt{B} \approx 2$ @ HL-LHC
 - Not including pile-up and some relevant backgrounds
 - 2b2j background is not negligible w.r.t. 4b after applying b-tagging

$$\frac{\text{EFF}_{b-\text{tag}}[2b2j]}{\text{EFF}_{b-\text{tag}}[4b]} \simeq \left(\frac{f_l}{f_b}\right)^2 \simeq 1.5 \cdot 10^{-4}$$

b-quark radiation in parton shower and additional light jets

INCLUDE PILE-UP AND PILE-UP MITIGATION TOOLS

- PU simulation: Overlay Pythia8 events $(< \mu >= 80 \text{ or } 150)$
- PU mitigation with SoftKiller [arXiv:1407.0408]
 - PU mitigation with trimming for large-R jets

STRATEGY: OPTIMIZE AND COMBINE ALL DECAY TOPOLOGIES

Merged

RESOLVED

jets with $p_T > 40$ GeV and $|\eta^{jet}| < 2.5$

• 4 b-tagged anti- k_T R = 0.4 (small-R)

Higgs reconstruction from leading 4

jets choosing combinations that

minimises di-jet mass difference

b-jets Resolved b-jets

INTERMEDIATE

• 1 large-R jet (Higgs-tagged + b-

• 2 b-tagged small-R jets, $\Delta R > 1.2$

BOOSTED

- 2 large-R jets (Higgs-tagged + btagged) with $p_T > 200$ GeV and $|\eta^{\rm jet}| < 2.0$
- Leading jets taken as Higgs candidates

For all categories:

- Loose Higgs mass window cut: $|m_{h,i}$ -125 GeV|< 40 GeV; j = 1, 2
- Rank categories by S/√B to make them exclusive:

Higgs-tagging:

- Trimmed anti- $k_T R = 1.0$ jet
- BDRS mass-drop tagged [arxiv:0802:2470]
- 2 matched b-tagged anti-k_⊤ R = 0.3 jet

b-tagging

- b-jet: $f_b = 0.8$
- c-jet: $f_c = 0.1$
- light jet: $f_1 = 0.01$

STRATEGY: MULTIVARIATE ANALYIS

- Multi-layer feed-forward Artificial Neural Net perceptron
- Architecture: $N_{var} \times 5 \times 3 \times 1$
- Trained separately for each category on the signal nd background distributions of 21 input variables: m_H , $p_{T,H}$, m_{HH} , $p_{T,HH}$, R_{HH} , substructure, ...

tagged)

w.r.t. large-R jet

• $HH \rightarrow b\bar{b}b\bar{b}$ could provide sufficient sensitivity to claim evidence for HH production

Combination yields:

S/ $\sqrt{B} \approx 3.1$ with $\int \mathcal{L} = 3000$ fb⁻¹

- Result is not sensitive to pile-up if pile-up reduction tools are used $(S/\sqrt{B} \approx 4)$
- Key issues:
 - Reduce light- and charm-mistag rates
 - Optimise PU mitigation techniques
 - Improve jet mass resolution
 - Keep trigger thresholds low to maintain efficiency in resolved channel

