New Physics affecting neutrino propagation at DUNE

Pilar Coloma Fermilab

Based on PC arXiv:1511.06357 and PC and Schwetz arXiv:1604.05772

ICHEP conference, Chicago August 6th, 2016

Non-Standard Interactions

$$\mathcal{L}^{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \delta \mathcal{L}^{d=5} + \frac{1}{\Lambda^2} \delta \mathcal{L}^{d=6} + \dots$$

Non-Standard Interactions

$$\mathcal{L}^{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \delta \mathcal{L}^{d=5} + \frac{1}{\Lambda^2} \delta \mathcal{L}^{d=6} + \dots$$

NSI can affect neutrinos in propagation through matter, e.g.:

$$\delta \mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_F \sum_{f,P} \epsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf)$$

Wolfenstein, '78, Valle '87, Guzzo et al '91

Models for NSI

Model-independent bounds are still weak for some parameters. However, if the new scale is assumed to be large, then:

They are (at least) quadratically suppressed with the scale of NP

Models for NSI

Model-independent bounds are still weak for some parameters. However, if the new scale is assumed to be large, then:

They are (at least) quadratically suppressed with the scale of NP

• Any model of NP should preserve gauge invariance. This typically imposes very strong bounds coming from charged lepton processes (at least, $\sim 10^{-2}$)

Antusch, Baumann, Fernandez-Martinez, 0807.1003 Gavela, Hernandez, Ota, Winter, 0809.3451

Models for NSI

Model-independent bounds are still weak for some parameters. However, if the new scale is assumed to be large, then:

- They are (at least) quadratically suppressed with the scale of NP
- Any model of NP should preserve gauge invariance. This typically imposes very strong bounds coming from charged lepton processes (at least, $\sim 10^{-2}$)

Antusch, Baumann, Fernandez-Martinez, 0807.1003 Gavela, Hernandez, Ota, Winter, 0809.3451

Possible way out: New Physics stands below EWSB

Farzan 1505.06906 Farzan and Shoemaker, 1512.09147 Farzan and Heeck, 1607.07616

NSI in propagation

$$\varepsilon_{\alpha\beta} \equiv \sum_{f,P} \frac{n_f}{n_e} \epsilon_{\alpha\beta}^{fP} \sim 3\epsilon_{\alpha\beta}^{u,V} + 3\epsilon_{\alpha\beta}^{d,V} + \epsilon_{\alpha\beta}^{e,V}$$

Effectively, NSI in propagation act as a generalized matter potential. Oscillation experiments will only be sensitive to two of the off-diagonal entries, e.g.:

$$H_{\text{mat}} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \tilde{\epsilon_{ee}} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \tilde{\epsilon_{\mu\mu}} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & 0 \end{pmatrix}$$

$$\tilde{\epsilon_{\alpha\alpha}} \equiv \epsilon_{\alpha\alpha} - \epsilon_{\tau\tau}$$

All (std+NSI) parameters included at once in the simulations: completely model-independent!

Current constraints on NSI

DUNE sensitivities to NSI

DUNE sensitivities to NSI

Some sensitivities show a strong dependence with the new CP-violating phases!

Potential issues: degeneracies

PC, 1511.06357 (See also talk by Poonam Mehta)

Generalized mass ordering degeneracy

Using
$$U = O_{23}O_{13}V_{12}$$

The vacuum Hamiltonian can be rewritten as:

$$H_{\text{vac}} = O_{23}O_{13} \begin{pmatrix} H^{(2)} & 0 \\ 0 & \Delta_{31} - \frac{\Delta_{21}}{2} \end{pmatrix} O_{13}^T O_{23}^T$$

$$H^{(2)} = \frac{\Delta_{21}}{2} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} e^{i\delta} \\ \sin 2\theta_{12} e^{-i\delta} & \cos 2\theta_{12} \end{pmatrix}$$

Invariant under:

$$\Delta m_{31}^2 \to -\Delta m_{31}^2 + \Delta m_{21}^2$$

$$\sin \theta_{12} \leftrightarrow \cos \theta_{12}$$

$$\delta \to \pi - \delta$$

$$H_{vac} \rightarrow -H_{vac}^*$$

Minakata, Nunokawa, hep-ph/0108085 Bakhti and Farzan, 1403.0744

Generalized mass ordering degeneracy

In the SM, the matter potential will break this degeneracy, as

$$H = H_{\text{vac}} + H_{\text{mat}}$$

PC and Schwetz, 1604.05772 Bakhti and Farzan, 1403.0744 (see also Garcia, Maltoni, Salvado, 1103.4365)

Generalized mass ordering degeneracy

In the SM, the matter potential will break this degeneracy, as

$$H = H_{\text{vac}} + H_{\text{mat}}$$

In presence of NSI, however:

$$H_{\text{mat}} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$$

$$\Delta m_{31}^2 \to -\Delta m_{31}^2 + \Delta m_{21}^2$$

$$\sin \theta_{12} \leftrightarrow \cos \theta_{12}$$

$$\delta \to \pi - \delta$$

$$\epsilon_{ee} \to -\epsilon_{ee} - 2$$

$$\epsilon_{\alpha\beta} \to -\epsilon_{\alpha\beta}^* \quad (\alpha\beta \neq ee)$$

$$H \to -H^*$$

 $H o -H^*$ The LMA-dark solution reappears

PC and Schwetz, 1604.05772 Bakhti and Farzan, 1403.0744 (see also Garcia, Maltoni, Salvado, 1103.4365)

The NSI couplings depend on the density of neutrons in matter:

$$\varepsilon_{\alpha\beta} \equiv \sum_{f=u,d,e} Y_f(x) \epsilon_{\alpha\beta}^{fV} \qquad Y_f \equiv N_f/N_e$$

$$Y_u(x) = 2 + Y_n(x)$$
$$Y_d(x) = 1 + 2Y_n(x)$$

$$Y_n^{\oplus} \sim 1.05$$

$$Y_n^{\odot} \sim 1/2 \rightarrow 1/6$$

PC and Schwetz, 1604.05772 (see also Escribuela et al, 0907.2630)

The NSI couplings depend on the density of neutrons in matter:

$$\varepsilon_{\alpha\beta} \equiv \sum_{f=u,d,e} Y_f(x) \epsilon_{\alpha\beta}^{fV} \qquad Y_f \equiv N_f/N_e$$

$$Y_u(x) = 2 + Y_n(x)$$
$$Y_d(x) = 1 + 2Y_n(x)$$

$$Y_n^{\oplus} \sim 1.05$$

 $Y_n^{\odot} \sim 1/2 \rightarrow 1/6$

Pilar Coloma - NSI at DUNE

PC and Schwetz, 1604.05772 (see also Escrihuela et al, 0907.2630)

Osc. prior from Gonzalez-Garcia and Maltoni, 1307.3092, CHARM constraint taken from Phys. Lett. B180, 303 (1986)

PC and Schwetz, 1604.05772

Osc. prior from Gonzalez-Garcia and Maltoni, 1307.3092, CHARM constraint taken from Phys. Lett. B180, 303 (1986)

PC and Schwetz, 1604.05772

Summary and conclusions

- Model-independent sensitivities of DUNE to NSI in propagation have been evaluated including <u>all possible parameters at once</u>:
 - DUNE will significantly improve over current constraints for ϵ_{eu} , $\epsilon_{e\tau}$ (and possibly $\epsilon_{u\tau}$)
 - NSI could affect the determination of θ_{23} and δ
 - Important correlations take place among different NSI parameters, e.g., $\epsilon_{\rm eff}$ and $\epsilon_{\rm eff}$
- The LMA-dark solution is a manifestation of a more profound problem \rightarrow a generalized mass ordering degeneracy!
 - It makes it <u>impossible</u> to determine the mass ordering for any oscillation experiment.

Thank you!!

DUNE sensitivities to NSI

The LMA-dark solution

For solar neutrinos in the adiabatic regime:

$$P_{ee} = \frac{1}{2} \left[1 + \cos 2\theta \cos \theta_m \right] \qquad \text{Parke, 1986}$$

Effective mixing angle at neutrino production point inside the Sun, in presence of NSI:

$$\cos \theta_m = \frac{\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e - \epsilon' N_d)}{\Delta m_{matter}^2}$$

$$\epsilon' = \sin^2 \theta_{23} \frac{dV}{\tau \tau} - \epsilon_{ee}^{dV}$$

Bottom line: One can obtain P < 0.5 even for $\cos 2\theta < 0$, as long as ϵ' is large enough!

Medium baseline reactor experiments

Medium baseline reactor experiments are not affected by NSI as they are performed in vacuum. They are also sensitive to additional terms in the probability:

$$P_{ee} = c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \Delta_{21} \right) + s_{13}^4 + 2s_{13}^2 c_{13}^2 \left[\cos 2\Delta_{31} (c_{12}^2 + s_{12}^2 \cos 2\Delta_{21}) + s_{12}^2 \sin 2\Delta_{31} \sin 2\Delta_{21} \right]$$

$$\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}$$
 There is some sensitivity to both ${\bf s}_{{\bf l}2}$ and ${\bf c}_{{\bf l}2}!$

This probability is invariant under the following transformation:

$$s_{12} \leftrightarrow c_{12} \quad \left(i.e., \theta_{12} \to \frac{\pi}{2} - \theta_{12}\right)$$

$$\Delta_{31} \to -\Delta_{31} + \Delta_{21}$$

Bakhti and Farzan, 1403.0744