# Search for non-standard and rare decays of the Higgs boson with the ATLAS detector

**ICHEP** 

2016-08-05

Chicago



Davide Gerbaudo
IFAE Barcelona
on behalf of the ATLAS Collaboration





# Overview



### **Motivations**

## Exotic decays

- Lepton Flavor Violation in H decays
- H → invisible (see talk by Monica Trovatelli)
- H → light scalar → 4b, μμττ, 4ℓ (see talk by Lidija Zivkovic)

### Rare decays

- $H \rightarrow \mu \mu$  (see talk by Christian Grefe)
- $H \rightarrow Z V$
- H and  $Z \rightarrow J/\Psi \gamma$ , Y(nS) $\gamma$
- H and  $Z \rightarrow \varphi \gamma$  new!



# Motivations



 Although the 125GeV boson looks like the SM Higgs boson, current constraints leave room for BSM physics:

$$\rightarrow$$
 Br(H $\rightarrow$ BSM)<34% at 95% C.L



- Rare (SM) and Exotic (non-SM) decays have not been observed yet
- Several theories beyond the SM (such as SUSY, 2HDM, etc.) predict such decays





# Higgs Boson LFV



u→e conversion

LFV measurements are usually translated in terms of LFV interaction through the effective theory with Lagrangian:

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots$$

$$f_L = q_L, \ell_L \text{ are } SU(2)_L \text{ doublets}$$
  $f_R = u_R, d_R, \nu_R, \ell_R \text{ the weak singlets}$ 

In the SM,  $Y_{ij}$  are diagonal; off-diagonal terms can arise in several BSM models.

The introduction of these terms leads to diagrams such as:



These terms can be constrained by several (low energy) processes.



# **HLFV: Indirect Constraints**



### From JHEP 03 (2013) 026



Stringent constraints from  $\mu \rightarrow e\gamma$ . Indirect upper limit Br(H $\rightarrow \mu e$ )<O(10<sup>-8</sup>) at 95% C.L. Constraints from  $T \to \mu \gamma$ ,  $T \to e \gamma$ . Indirect upper limit  $Br(H \to T\mu)$  and  $Br(H \to Te) < O(10\%)$  at 95% C.L. Limits on  $H \to T\ell$  extracted from ATLAS  $H \to TT$ 



# Overview of $H \rightarrow \ell \tau$ channels



Topology similar to the one of the SM decays  $H \to T_e T_\mu$  and  $H \to T_{had} T_\ell$ , but with important kinematic differences:





Neutrino collinear to τ





# JHEP 1511 (2015) 211

- Opposite-sign, well-separated *ξ*τ, MET

- Two signal regions based on  $m_T$ ; small differences in kin. sel. b/w et and  $\mu \tau$
- Final discriminant: missing mass calculator (MMC)





[GeV]





Completely data-driven study, based on the data-driven asymmetry method proposed in PRD 90, 015025 (2014)

Select opposite charge e+µ sample.

### Assumptions:

- the SM processes are symmetric when we exchange e ↔ µ
- 2. LFV decays break this symmetry. E.g.  $H \rightarrow \mu \tau_e$ :  $\tau$  and  $\mu$  take  $\sim \frac{1}{2} p_T$ ,  $e \sim \frac{1}{6} p_T$ Subdivide the  $e + \mu$  sample in two sub-samples:
  - $e\mu$  sample, with  $p_{\tau}(e) > p_{\tau}(\mu)$
  - $\mu e$  sample, with  $p_{\tau}(e) < p_{\tau}(\mu)$

Estimate the background to  $H \rightarrow \mu \tau_e$ :(present only in  $\mu e$ ) from the  $e\mu$  sample & vice-versa.

This method is sensitive to:  $|Br(H \rightarrow \mu \tau_{P}) - Br(H \rightarrow e \tau_{H})|$   $m_H$  estimated with collinear approx.

$$m_{\mathsf{coll}} = \sqrt{2 p_{\mathsf{T}}^{\ell_1} \left( p_{\mathsf{T}}^{\ell_2} + E_{\mathsf{T}}^{\mathsf{miss}} 
ight) \left( \cosh \Delta \eta - \cos \Delta \phi 
ight)}$$





# $H \rightarrow \ell \tau$ : combination



⊳Improve indirect bounds by an order of magnitude: arXiv:1604.07730 [hep-ex]





# Rare Decays



### Couplings of the Higgs boson to light (or first and second generation)

### **leptons**

- H → μμ (see talk by Christian Grefe)
- $H \rightarrow ee$

and

quarks  $(H \rightarrow X + \gamma)$ 

- $H \rightarrow Z/\gamma^* + \gamma$
- $H \rightarrow J/\Psi \gamma$ ,  $Y(nS)\gamma$
- $H \rightarrow \phi \gamma$

provide insights on the nature of the

Yukawa couplings

⇒ sensitive to physics beyond the SM





# $H \rightarrow Z/\gamma^* (\longrightarrow \ell\ell) + \gamma$

### PLB 732 (2014) 8-27





- Small branching ratio, enhanced by heavy Q in the loop
- Isolated, same-flavor  $e^+e^-$  (p<sub>T</sub>>10GeV) or  $\mu^+\mu^-$  (p<sub>T</sub>>15 GeV) and one  $\gamma$  (p<sub>T</sub>>15GeV)
- Events categorised by lepton flavor,  $\Delta |\eta|$  (Z,  $\gamma$ ), and Higgs  $p_T$
- Three-body inv. mass resolution improved by Z-mass constraint kinematic fit







# $H/Z \rightarrow J/\Psi \gamma$ , Y(nS) $\gamma$



- PRL 114, 121801 (2015)
   High-p<sub>T</sub> (36 GeV) quarkonium recoiling against a high-p<sub>T</sub> (36 GeV) photon.
- Consider only  $\mu^+\mu^-\gamma$  final state (e<sup>+</sup>e<sup>-</sup> $\gamma$  more challenging and poorer mass res.)
- Events categorised based on  $\mu |\eta|$  and  $\gamma$  conversion.
- Simultaneous fit performed to  $m(\mu\mu\gamma)$  and  $m(\mu\mu)$ .







# $H/Z \rightarrow J/\Psi \gamma$ , Y(nS) $\gamma$



First experimental bounds on Higgs and Z boson decays to these final states.



Comparison with SM Br:  $\sim 10^{-3}$  for SM Higgs boson and  $\sim 10^{-6}$  for Z boson.



 $H/Z \rightarrow \phi \gamma$ 

### arXiv:1607.03400 [hep-ex]





- Sensitivity to s-quark
   Yukawa couplings
- Reconstruct  $\phi \rightarrow K^+K^-$ , Br( $\phi \rightarrow K^+K^-$ )=49%
- Two high-p<sub>T</sub> (20, 15 GeV) isolated collinear tracks (ΔR<0.05, m<sub>KK</sub>~m<sub>φ</sub>) recoiling against γ (p<sub>T</sub>> 35 GeV)
- Dedicated trigger
   (~78% efficiency wrt. offline selection)
- Data-driven template modeling of bkg

| _             |          |                                                                                                  | <del>-</del>     |
|---------------|----------|--------------------------------------------------------------------------------------------------|------------------|
| é             | 400      |                                                                                                  | -                |
| Θ             | 120      | ATLAS                                                                                            |                  |
| 5             | L        | vs=13 TeV, 2.7 fb <sup>-1</sup>                                                                  | 4                |
| ıts           |          |                                                                                                  | 4                |
| ē             | 100      | - • Data                                                                                         | -                |
| Events/ 5 GeV |          | Background Fit                                                                                   |                  |
|               | <u> </u> | $B(H\rightarrow\phi\gamma)=10^{-3}$                                                              | 4                |
|               | 80       |                                                                                                  | -                |
|               | F        | B(Z→φγ)=10 <sup>-6</sup>                                                                         | -                |
|               |          |                                                                                                  |                  |
|               | 60       | _                                                                                                | _                |
|               | -        |                                                                                                  | 4                |
|               | F        |                                                                                                  | -                |
|               | 40       | _                                                                                                |                  |
|               | 40       |                                                                                                  | 4                |
|               | F        |                                                                                                  | 4                |
|               | - A      |                                                                                                  | -                |
|               | 20       |                                                                                                  |                  |
|               | L        |                                                                                                  | 4                |
|               | H        |                                                                                                  | 444              |
| ÷             | 2 -      |                                                                                                  | .   •            |
| Data/Fit      | 1.5      | <mark>-</mark>                                                                                   |                  |
| atí           | 1        | ╀┼ <del>┑┋┩┩┩┩</del> ┸┿ <del>╻╻</del> ┸┷╍╍┿┿╍╘┈┿┿╻╻╶╇ <del>╏┈╏╻┈╵</del> ╇╇ <del>╏┈┩</del> ┼┼┼┼┼┼ |                  |
|               |          |                                                                                                  | <sup>▎</sup> ♥▘∄ |
|               | 0        | 50 100 150 200 250                                                                               | 300              |
|               | Ū        |                                                                                                  |                  |
|               |          | $m_{K^+K^-y}$ [G                                                                                 | evj              |

| Branching Fraction Limit (95% CL)                                     | Expected            | Observed |
|-----------------------------------------------------------------------|---------------------|----------|
| $\mathcal{B}(H \to \phi \gamma) [10^{-3}]$                            | $1.5^{+0.7}_{-0.4}$ | 1.4      |
| $\mathcal{B}\left(Z ightarrow\phi\gamma ight)\left[\;10^{-6}\; ight]$ | $4.4^{+2.0}_{-1.2}$ | 8.3      |

### **Expected SM values:**

- $\mathcal{B}(H \to \phi \gamma) = (2.3 \pm 0.1) \times 10^{-6}$  JHEP 1508 (2015) 012 (arXiv:1505.03870)
- $\mathcal{B}(Z \to \phi \gamma) = (1.2 \pm 0.1) \times 10^{-8}$  PRD 92, 014007 (2015) (arXiv:1411.5924)



# Conclusions



- ► ATLAS has carried out several searches for rare and exotic decays of the Higgs boson cover a wide range of final states:
  - LFV H decays
  - $H \rightarrow Z/\gamma^* \gamma$
  - $H/Z \rightarrow J/\Psi \gamma$ ,  $Y(nS)\gamma$
  - $H/Z \rightarrow \phi \gamma$  new!
- These searches, performed at both 8TeV and 13TeV, have shown no significant excess so far.
- These searches will be those benefitting the most from the large datasets that will be available in the future:
  - Run2: 300/fb might not be enough for evidence
  - HL-LHC: 1000/fb will allow to measure such rare decays, but require significant detector upgrades

### ATL-PHYS-PUB-2013-014

**ATLAS** Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$ 



15

# Backup



# ATLAS $H \rightarrow \ell T_{\rho}$

### CERN-EP-2016-055







Non-prompt lepton

ATLAS Internal,  $\sqrt{s} = 8$  TeV, 20.3 fb<sup>-1</sup> Events / 10 600 Data µe SR Non-prompt noJets SM Higgs Z+jets Other bka. stat+syst H→μτ, BR=1% 400 300 Asymmetric bkg. 200 from data (MM) 100 Data/Bkg 1.5 m<sub>coll</sub> [GeV]

Residual differences between leading and subleading lepton (e.g. trigger efficiencies) → additional asymm. free term in the Lhood fit:

$$f(p_T, \ell_2)$$

95% CL upper limits

$$Br(H \rightarrow et) < 1.36\% (1.48 exp.)$$

### JHEP 1511 (2015) 211



### Combined fit MMC distributions.

Main systematic uncertainties: W+jets shape & norm.





95% CL upper limit Br(H→µT)<1.85% (1.24 exp.)

1.3 $\sigma$  excess (from SR2) with best fit Br(H $\rightarrow$ µT)=0.77 $\pm$ 0.62%





Same approach used for  $H \rightarrow \ell \tau_{had}$ :

- opposite-sign, well-separated µт, MET
- Two signal regions based on m<sub>T</sub>
- minor differences in the kinematic selection (m<sub>7</sub><m<sub>H</sub> → softer p<sub>T</sub>)





Previous search from LEP: Z.Phys. C73 (1997)

Br(Z 
$$\rightarrow \mu \tau$$
) < 1.2 x 10<sup>-5</sup>

Large number of Z bosons produced at the LHC, but  $Z \rightarrow \ell \tau$  not explored yet.

95% CL upper limit:

Br(
$$Z \rightarrow \mu \tau$$
) < 1.54 x 10<sup>-5</sup>