Measurement of the muon-neutrino charged-current cross section on water with zero pions in the final state

Tianlu Yuan
The T2K Collaboration

Accelerator-based, long-	
baseline neutrino oscillation	
experiment in Japan	
Beam mode	Total POT
	7.6×10^{20}
Antineutrino	7.5×10^{20}

Pi-zero detector (PØD) is upstream of tracker, which consists of 3 argon-based TPCs interspaced with 2 scintillator-based FGDs

4. Motivation

5. Neutrino interactions

Detectors are not made of free nucleons
and intranuclear effects can affect observables.

Measure a topology after final state interactions called CCO π with outgoing μ, zero π, and any number of nucleons. Mostly due to CCQE interactions.

Quasielastic

Interaction in PØD
PロD

Beam \longrightarrow
Event distributions

7. Selection efficiency and purity

 Tracker is needed to ensure accurate momentum reconstruction
8. Corrections and systematics

Nominal MC is corrected after production to account for unsimulated effects and better model predictions
Systematic uncertainties are numerically propagated by tweaking various parameters that perturb the MC

9. Analysis strategy

$$
\begin{aligned}
& N_{i}^{H_{2} O}=\frac{U_{i j}^{w} N_{j}^{W}}{\epsilon_{i}^{W}}-R \frac{U_{i j}^{a}\left(N_{j}^{a}\right)}{\epsilon_{i}^{a}} \quad \text { Mata } \\
& d \sigma=\frac{N_{i}^{H_{2} O}}{F^{W} N_{n} D_{i}} \begin{array}{l}
\text { Integrated flux, num } \\
\text { nucleons, bin width }
\end{array}
\end{aligned}
$$

10. Double-differential cross section

12. Conclusions

Overall, result agrees better with a corrected version of the NEUT generator than with GENIE, although there are some discrepancies with both models at the high-angle regions.
Good agreement with T2K's double-differential measurement on carbon PhysRevD.93.112012

