

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

> AUGUST 3 - 10, 2016 CHICAGO

Theoretical motivations for precision measurements of oscillation parameters

Ye-Ling Zhou (IPPP, Durham) 4 Aug 2016

erc

European Research Counci

Mixing angles: theoretical predictions

Neutrino oscillation experiments

Δm_j^2	$f_i \equiv$	m_j^2	_	m	l_{i}
	ı	J			

Туре	Probability	Existing Exp	periments	$\Delta_{ji} \equiv \Delta m_{ji}^2 L/(4E)$			
Solar	P_{ee}	Super-K, SNO	, Borexino,				
	$P_{ee} \approx \sin^2$	$\theta_{12} \qquad P_{ee} \approx$	$1 - \frac{1}{2}\sin^2 2\theta_{12}$	(MSW effect)			
Atmospheric	$P_{\mu\mu}, P_{\mu au}$	Super-K,					
$P_{\mu\tau} \approx 1 - P_{\mu\mu} \approx \sin^2 2\theta_{23} \sin^2 \Delta_{31}$							
Reactor	$P_{\bar{e}\bar{e}}$	KamLAND, Da	aya Bay, Reno, I	Double Chooz,			
	$P_{\bar{e}\bar{e}} \approx 1 - \sin$	$n^2 2\theta_{12} \sin^2 \Delta_{21}$	$P_{\bar{e}\bar{e}} \approx 1 - \sin^2 2$	$2\theta_{13}\sin^2\Delta_{31}$			
Accelerator	$P_{\mu\mu}, P_{\mu e}$	K2K, T2K, MIN	NOS, NOvA,				
	$P_{\mu\tau} \approx 1 - P_{\mu}$	$\mu_{\mu} \approx \sin^2 2\theta_{23} \sin^2 \theta_{23} \sin^2 \theta_{23}$	Δ_{31}	OPERA , $P_{\mu\tau}$			
$P_{\mu e} \approx \frac{s_{23}^2 \sin^2 2\theta_{13}}{(1-\hat{A})^2} \sin^2[(1-\hat{A})\Delta_{31}] + \frac{\alpha J \sin(\Delta_{31}+\delta)}{\hat{A}(1-\hat{A})} \sin(\hat{A}\Delta_{31}) \sin[(1-\hat{A})\Delta_{31}],$							
$\tilde{J} = \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}, \ \alpha = \Delta m_{21}^2 / \Delta m_{31}^2, \ \hat{A} = A_{\rm CC} / \Delta m_{31}^2$							

Next generation: DUNE, T2HK, JUNO, PINGU,.....

Mixing angles: theories vs experiments

Flavour symmetry

Constant mixing patterns

Mixing induced by flavon cross couplings

An economical model Pascoli, YLZ, JHEP 1606, 073 (2016) $V_{\text{flavon}} = V(\varphi) + V(\chi) + V(\varphi, \chi) + \cdots$ 11 11 11 Self Couplings Cross Couplings $\sin \theta_{12} = \frac{1}{\sqrt{3}} \left(1 - 2|\epsilon_{\varphi}| \cos \theta_{\varphi} + 2\epsilon_{\chi} \right)$ $\sin \theta_{23} = \frac{1}{\sqrt{2}} \left(1 + |\epsilon_{\varphi}| \cos \theta_{\varphi} \right)$ $V(\varphi) = \mu_{\varphi}^2 I_1 + g_1 I_1^2 + g_2 I_2$ $I_1 = \varphi_1^2 + \varphi_2^2 + \varphi_3^2$ $I_{2} = \varphi_{1}^{2}\varphi_{2}^{2} + \varphi_{2}^{2}\varphi_{3}^{2} + \varphi_{3}^{2}\varphi_{1}^{2}$ $\sin\theta_{13} = \sqrt{2} |\epsilon_{\varphi} \sin\theta_{\varphi}|$ $g_2 < 0$ $g_2 > 0$ $\delta = \begin{cases} 270^{\circ} - 2|\epsilon_{\varphi}|\sin\theta_{\varphi}, & \theta_{\varphi} > 0, \\ 90^{\circ} - 2|\epsilon_{\varphi}|\sin\theta_{\varphi}, & \theta_{\varphi} < 0, \end{cases}$ Z_3 Z_2 $\epsilon_{\varphi} = |\epsilon_{\varphi}| e^{i\theta_{\varphi}}$ $\delta \approx \begin{cases} 270^{\circ} - \sqrt{2}\theta_{13}, & \theta_{\varphi} > 0, \\ 90^{\circ} + \sqrt{2}\theta_{13}, & \theta_{\varphi} < 0. \end{cases}$ Sum Tri-bimaximal rule

Origin of CP violations

Explicit CP violations

Complex coefficients

$$\mathcal{L} = |\lambda|e^{i\alpha}\phi^4 + |\lambda|e^{-i\alpha}\phi^{*4} + \cdots$$
$$\underbrace{CP}_{}\mathcal{L}' = |\lambda|e^{i\alpha}\phi^{*4} + |\lambda|e^{-i\alpha}\phi^4 + \cdots \neq \mathcal{L}$$

Spontaneous CP violations

Real coefficients

No CP violations at some high scale.

CP violation arises from complex vacuum expectation values (VEV) of some scalars.

 $\langle \phi \rangle = (v_1 e^{i\alpha_1}, v_2 e^{i\alpha_2}, v_3 e^{i\alpha_3})^T$

Geometrical CP Violation: analytical calculable CP-violating phases Branco, Gerard, Grimus, 84; de Medeiros Varzielas, Emmanuel-Costa, 11

Generalised CP symmetry

Generalised CP symmetry (GCP)

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} \to X \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix}^* \quad \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \to X \begin{pmatrix} \nu_e^c \\ \nu_\mu^c \\ \nu_\tau^c \end{pmatrix}$$

with
$$(x^0, \overrightarrow{x}) \to (x^0, -\overrightarrow{x})$$

X is a unitary matrix (may not be an identity matrix).

Consistency condition
Holthausen, Lindner, Schmidt, 1211.6953

$$\begin{array}{c} g' \in G_{\mathrm{f}} \\ & & & & \\ \hline CP \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

Once the flavour symmetry is fixed, all GCP candidates are determined.

Powerful prediction

Feruglio, Hagedorn, Ziegler, 1211.5560

Predictions of generalised CP symmetry

• CP conserving

$$X = \mathbf{1}_{3\times 3} \qquad \delta = 0,180^{\circ}.$$

- OP violations from generalised CP symmetry
 - μ - τ reflection symmetry => Maximal CP violations

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \rightarrow \begin{pmatrix} \nu_e^c \\ \nu_\tau^c \\ \nu_\mu^c \end{pmatrix} \qquad M_\nu = \begin{pmatrix} A & B & B^* \\ B & C & D \\ B^* & D & C^* \end{pmatrix}$$
$$\implies \theta_{23} = 45^\circ, \ \delta = 90^\circ, 270^\circ.$$

Babu, Ma, Valle, 02; Harrison, Scott, 02.

CPV

CPC

μ - τ reflection symmetry is predicted by A₄, and any groups containing A₄, e.g. S₄, A₅, ...

Feruglio, Hagedorn, Ziegler, 1211.5560; 1303.7178; Girardi, Meroni, Petcov, Spinrath, 1312.1966; Li, Ding, 1312.4401; Ballett, Pascoli, Turner, 1503.07543...... For a review, see Xing, Zhao, 1512.04207.

Generalised CP symmetries also provide other possibilities that δ does not take specific values, e.g. $\Delta(48)$, $\Delta(96)$, and some other groups in the $\Delta(3n^2)$, $\Delta(6n^2)$ series.

Ding, YLZ, 1304.2645; 1312.5222; Ding, King, 1403.5846; Hagedorn, Meroni and Molinaro, 1408.7118; Ding, King and Neder, 1409.8005; Ding, King, 1510.03188.

Lepton asymmetry in the early Universe

Alternative way for lepton asymmetry: CPPT

Alternative way for lepton asymmetry: CPPT

Alternative way for lepton asymmetry: CPPT

Thank you very much