Lepton Jets from Radiating Dark Matter (based on arXiv:1505.07459, JHEP 07 (2015) 045) collaborated with Malte Buschmann, Joachim Kopp, Pedro Machado

Jia Liu

Johannes Gutenberg University Mainz

ICHEP 2016, Chicago

Motivation for radiating dark matter

- Dark sector might be complicated
 - weak connection to Standard Model
 - complicated, e.g. multiple particles
 - strong interaction inside dark sector (e.g. self-interacting DM)
- Dark matter could have strong radiation
 - multiple radiation of A'
 - light A' highly boosted
 - A' decay products highly collimated, forming Lepton Jets

Previous Lepton Jet works

- Cascade decay of heavy new particles in SUSY
 - light particles produces lepton pair
 - Nima, Neal 08; L.T. Wang et al. 09; Y. Bai, Z. Han 09; C.C. Han 15 (light mass gap);
- non-standard Higgs decays to Dark Sector
 - e.g. decay to two A'
 - J. Ruderman et al. 10; D. Curtin et al. 13; A. Gupta et al. 15;
- single A' associated with DM pair production
 - A. Gupta et al. 15; M. Autran et al.; Y. Bai et al.;
- hadronic jets with non-standard properties
 - hidden valley (Tao Han, Zongguo Si et al. 07)
 - high multiplicities in the jet cone (P. Schwaller et al. 15)
 - missing energy aligned with a jet (T. Cohen et al. 15)
 - DM strongly interaction with SM, DM produce hadronic trackless jets (Y. Bai et al. 11)

Our work

- Parton Shower analytic calculation compared with Monte Carlo (see also Arbuzov 99)
- high multiplicity of A' from DM pair production
- prompt and displaced searches (recast from ATLAS)

Model

Model

Relevant Lagrangian:

$$\mathcal{L}_{dark} \equiv \bar{\chi} (i \partial \!\!\!/ - m_{\chi} + i g_{A'} A') \chi - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}$$
(1)

DM pair production for toy model:

$$\mathcal{L}_{Z'} \equiv g_q \sum_f \bar{q}_f \vec{Z}' q_f + g_\chi \bar{\chi} \vec{Z}' \chi$$
⁽²⁾

Model

A' Branching Ratios

BR calculated by datas from low energy e^+e^- collider

Model

Benchmarks

Table 2: Derived quantities

Benchmarks not excluded by: mono-jet and dijet searches; thermal relic density limits, direct and indirect DM searches, DM self-interactions limits; ϵ limit.

Dark Parton Shower

Differential collinear splitting probability

$$\frac{\alpha_{A'}}{2\pi} dx \frac{dt}{t} P_{\chi \to \chi}(x, t) \quad \text{with} \quad P_{\chi \to \chi}(x, t) = \frac{1 + x^2}{1 - x} - \frac{2(m_{\chi}^2 + m_{A'}^2)}{t} \quad (3)$$
$$x \equiv E_{\chi}/E_0 \qquad t \equiv (p_{\chi,\text{out}} + k)^2 - m_{\chi}^2 \quad (4)$$

Physical limits:

$$x_{\min} \equiv m_{\chi}/E_0 , \qquad x_{\max} \equiv 1 - m_{A'}/E_0 ,$$
 (5)

$$t_{\min}(x) = m_{A'}^2 + 2(E_0^2 x(1-x) - \sqrt{x^2 E_0^2 - m_\chi^2} \sqrt{(1-x)^2 E_0^2 - m_{A'}^2}) \quad (6)$$

$$t_{\max}(x) = m_{\mathcal{A}'}^2 + 2p_{\chi,\text{out}} \cdot k \big|_{k_{t,\max}}$$
⁽⁷⁾

Recursive Formalism

• DM energy spectrum:

$$f_{\chi}(X) = \sum_{m=0}^{\infty} p_m f_{\chi,m}(X) \quad \text{with} \quad p_m = \frac{e^{-\langle n_{A'} \rangle} \langle n_{A'} \rangle^m}{m!} \qquad (8)$$

where p_m Poisson probability, $f_{\chi,m}$ energy distribution with exactly m emitted A'.

$$f_{\chi,m+1}(X) = \int_{x_{\min}}^{x_{\max}} dx_m f_{\chi,1}(x_m) \frac{f_{\chi,m}(X/x_m)}{x_m} \Theta(x_{\min} \le X \le x_{\max}),$$
(9)

with

$$f_{\chi,1}(X) \equiv \frac{1}{\langle n_{\mathcal{A}'} \rangle} \frac{\alpha_{\mathcal{A}'}}{2\pi} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} P_{\chi \to \chi}(X) \Theta(x_{\min} \le X \le x_{\max}) \quad (10)$$

• A' spectrum analogue

Mellin Transform

DM spectrum given by inverse Mellin transform (Fourier analogue)

$$f(X) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} ds \, X^{-s} \, \varphi(s) \,. \tag{11}$$

where the different moments are

$$\mathcal{M}[f](s+1) \equiv \varphi(s+1) \equiv \int_0^\infty dX \, X^{s-1} f(X) = e^{-\langle n_{\mathcal{A}'} \rangle (1-\overline{X^s})} \qquad (12)$$

with

$$\overline{X^{s}} \equiv \frac{1}{\langle n_{\mathcal{A}'} \rangle} \frac{\alpha_{\mathcal{A}'}}{2\pi} \int_{x_{\min}}^{x_{\max}} dx \, x^{s} \, \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} P_{\chi \to \chi}(x) \,. \tag{13}$$

Comparison: $e^+e^- \rightarrow \bar{\chi}\chi + anyA'$ at 1TeV

Prompt Search

Based on ATLAS, 7 TeV, 5 fb⁻¹, arXiv:1212.5409

Muonic lepton jet (LJ)

 $\geq 2\mu$'s inside cone $\Delta R = 0.1$

- proper primary vertex ($d_0 < 1mm$)
- μ 's have track in inner detector ($L_{xy} < 122.5mm$)
- $m_{\mu\mu} < 2 \; {
 m GeV}$
- LJ isolated in the calorimeter
- 2 LJs required
- ightarrow high signal efficiency (\sim 10%) if c au small
- \rightarrow rely on branching to muons

Prompt Search

Based on ATLAS, 7 TeV, 5 fb⁻¹, arXiv:1212.5409

two LJ event

	7 TeV	13 TeV
Benchmark A	0.8	109
Benchmark B	3.9	334
All backgrounds	$\textbf{0.5}\pm\textbf{0.3}$	30 ± 18
data	3	

- Dominant background: hadronic multi-jet and $\gamma+{\rm jets}$ events by photon conversion
- Benchmarks not ruled out by 7TeV, but will by 13TeV
- 8TeV might exclude BKG only model already

Displaced Search

Based on ATLAS, 8 TeV, 20.3 fb⁻¹, arXiv:1409.0746

three different LJ types

- Muonic: $\geq 2\mu$'s inside cone $\Delta R = 0.5$
- Mixed: $\geq 2\mu$'s + 1 jet inside cone $\Delta R = 0.5$
- Calorimeter: jet with small EM fraction
- μ 's don't have a track in ID ($L_{xy} > 122.5mm$)
- LJ isolated in ID
- 2 LJs required
- \rightarrow low signal efficiency if $c\tau$ too small or too large
- \rightarrow hadronic channels contribute

Displaced Search

Detector	$A' ightarrow e^+ e^-$	$A' ightarrow \mu^+ \mu^-$	$A' ightarrow \pi^+\pi^-/K^+K^-$	$A' ightarrow \pi^+ \pi^- \pi^0$	$A' ightarrow K^0_L K^0_S$
LJ type	2 (calorimeter)	0 (muonic)	2 (calorimeter)	2 (calorimeter)	2 (calorimeter)
ID	track	track	track	track	(√)
ECAL	EM fraction	\checkmark	\checkmark	EM fraction	(√)
HCAL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Key:	Muon Electron Charged Hadron (e.g. Plon) Neutral Hadron (e.g. Neutron) Photon Gradent Slicon Tracker Slicon Slicon Calorimett Slicon Sl	2m 2m etc Hadron Calorimeter	an 4n	5m 6m 6m 20 20 20 20 20 20 20 20 20 20 20 20 20	The second

Displaced Search

	Lepton jet type							
	0-0	0-1	0-2	1-1	1-2	2-2	All	All excl. 2-2
Cosmic ray bkg.	15	0	14	0	0	11	$40\pm11\pm9$	$29\pm9\pm29$
8 TeV								
Multi-jet bkg.							$70\pm58\pm11$	$12\pm9\pm2$
Benchmark A	14	3	104	0	14	200	$335\pm18\pm100$	$135\pm12\pm41$
Benchmark B	2.1	0.4	3.0	0	0.3	1.2	$7\pm2.1\pm2.6$	$5.8\pm1.7\pm2.4$
data	11	0	11	4	3	90	119	29
13 TeV								

Benchmark A	169
Benchmark B	28

- Dominant background: multi-jet and cosmic ray
- type 1 (mixed) LJ is hard to produce
- type 2 (calorimeter) LJ usually dominates
- 13TeV conservatively calculated by 0-0 type LJ

Parameter Scans

Parameter Scans

Parameter Scans

Exclusion Limits

Summary

- Semi-analytic description of dark photon radiation via recursive integration and Mellin transform
 - \rightarrow Good agreement with Monte Carlo
- Recast of prompt and displaced ATLAS searches \rightarrow Powerful limits on not yet tested parameter space
- Large improvement at 13 TeV expected

Thank you!