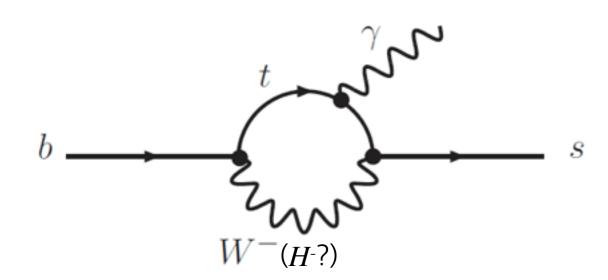
Measurements of radiative *B* meson decays at *Belle*

Hanjin Kim (Yonsei Univ.) for *Belle* Collaboration

Coverage of this talk

- -Radiative Penguin decays of b quark
 - >> Reviews on recent works at **Belle**
 - Search for $B_s^0 o \gamma \gamma$ and $B_s^0 o \phi \gamma$
 - Search for $B^0 \to \phi \gamma$
 - Semi-Inclusive $\mathcal{B}(b \to s\gamma)$
 - Inclusive $A_{CP}(b \rightarrow (s+d)\gamma)$

>>New result at *Relle*

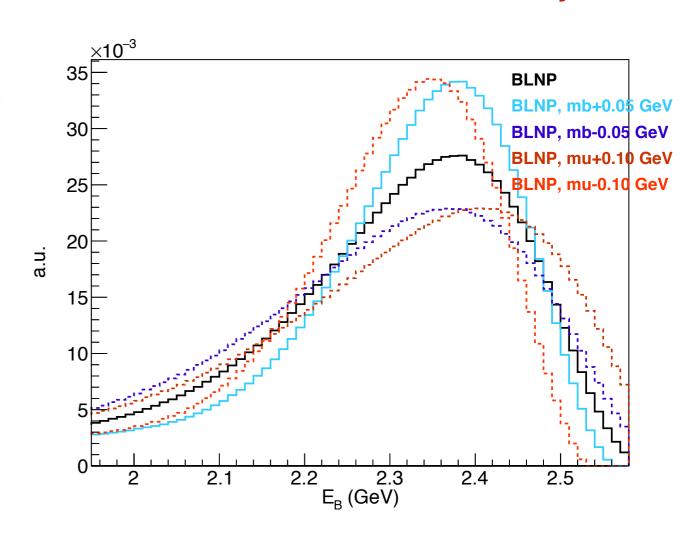

• Inclusive $b \rightarrow (s+d)\gamma$

Integrated Luminosity at **Belle**

711 fb⁻¹ for Y(4S)

121 fb⁻¹ for Y(5S)

Introduction to $b \rightarrow s \gamma$ decay


Electroweak penguin FCNC processes highly suppressed in the tree level

H⁻ in 2HDM Type-II or SUSY squarks can enter the loop \rightarrow BF, A_{CP} Probe to New Physics

Inclusive spectrum described by m_b and μ_π^2 Significantly dependent on the parameters Low cutoff necessary for a good prediction on the inclusive BF

$$E_{\gamma}^{cutoff} = 1.6 \text{ GeV}$$

Measured spectrum can be used to constrain HQE parameters *Later in this talk!*

Introduction to $b \rightarrow s \gamma$ decay

Current SM *NNLO BF* [PRL 114, 221801, 2015]

$$\mathcal{B}(\overline{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \, GeV}^{NNLO} = (3.36 \pm 0.23) \times 10^{-4}$$

HFAG 2016 / PDG 2015 Average $\mathcal{B}(\overline{B} \to X_s \gamma)_{E_{\nu} > 1.6 GeV} = (3.49 \pm 0.19) \times 10^{-4}$

BF used to constrain the *new physics parameters* [arXiv:1412.7515] $M(H^-) > 480 \text{ GeV}$ at 95% CL

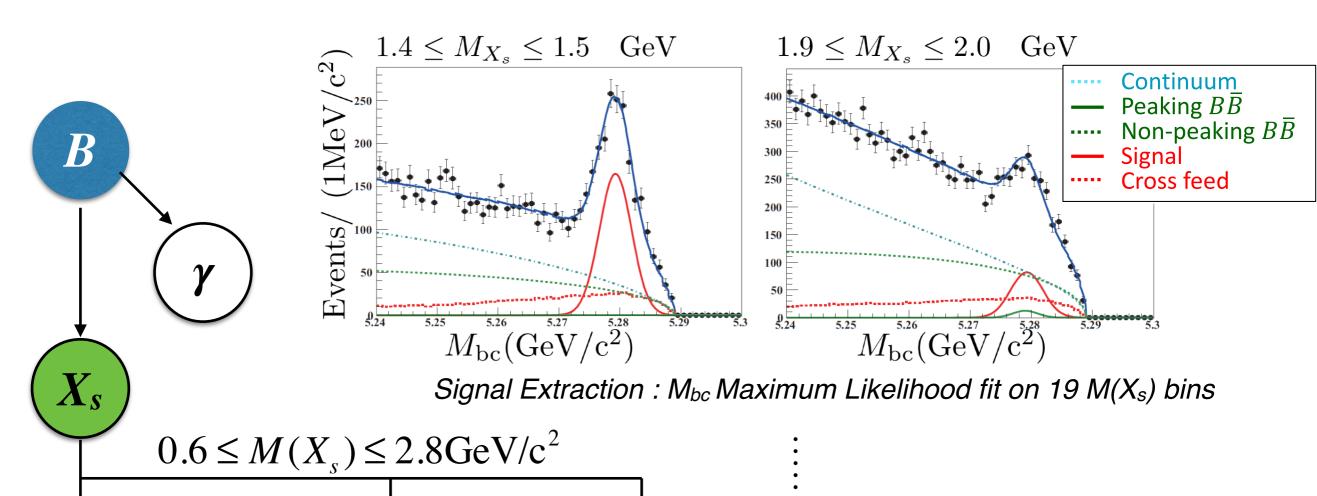
$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$$
$$f = X_{s,d}\gamma$$

Zero asymmetry predicted by SM for s+d (cancellation due to CKM unitarity)

Channel
$$A_{CP}(SM)$$

$$B \rightarrow X_s \gamma \qquad [-0.6\%, +2.8\%]$$

$$B \rightarrow X_d \gamma \qquad [-62\%, +14\%]$$


$$B \rightarrow X_{s+d} \gamma \qquad 0$$

$$A_{CP}^{HFAG} = -0.008 \pm 0.029$$

PRL 106, 141801 (2011)

$\mathcal{B}(\overline{B} \to X_s \gamma)$ with semi-inclusive method

T.Saito, A.ishikawa, H.Yamamoto, et al. (Belle Collaboration), published in PRD 91, 052004 (2015)

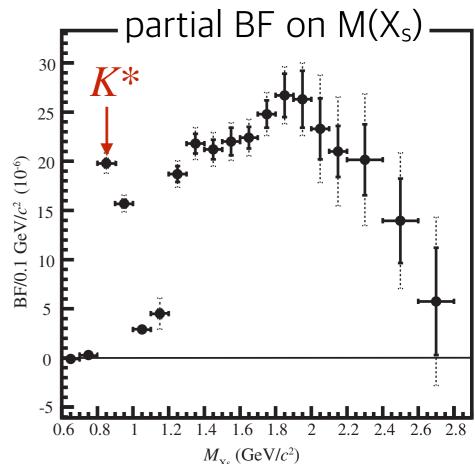
1 or 3 K/K_s (1 K_s at most) up to 4 π/π^0 (2 π^0 at most)

at most 1 n

In total 38 exclusive X_s states (70% of total BF)

- continuum suppressed by neural network trained with topological variables
- Peaking D background veto using invariant mass

$\mathcal{B}(\overline{B} \to X_s \gamma)$ with semi-inclusive method

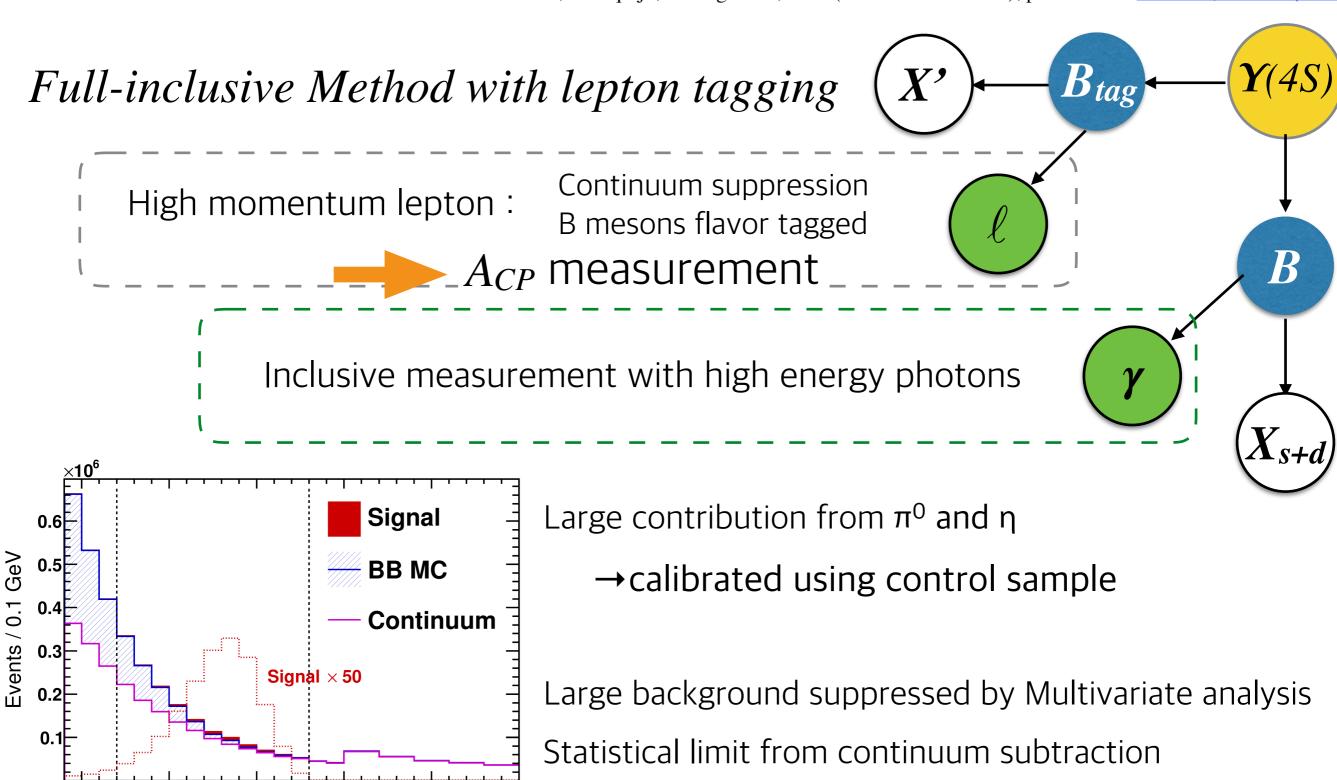

T.Saito, A.ishikawa, H.Yamamoto, et al. (Belle Collaboration), published in PRD 91, 052004 (2015)

>> Result

$$\mathcal{B}(\overline{B} \to X_s \gamma) = (3.51 \pm 0.17_{stat} \pm 0.33_{syst}) \times 10^{-4}$$

- The largest systematic uncertainty is associated Hadronization Model (~7%)
- The most precise measurement ever implemented with this method

Source	Systematic uncertainty (%)
$B\overline{B}$ counting	1.37
Detector response	2.98
Background rejection	3.38
M_{bc} PDF	5.06
Hadronization model	6.66
Missing mode	1.59
Total	9.3


$\overline{B} \to X_{(s+d)} \gamma$ with inclusive method

2.5

E_γ (GeV)

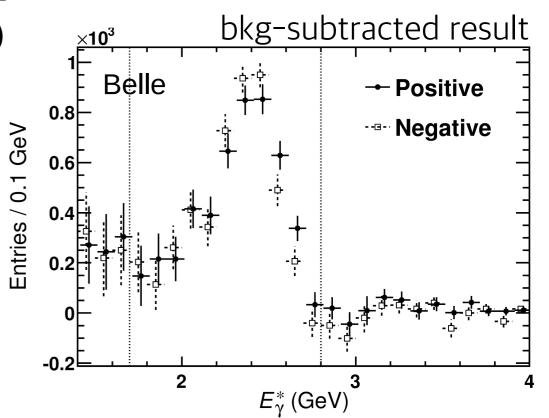
3.5

L. Pesantez, P. Urquijo, J. Dingfelder, et al. (Belle Collaboration), published in PRL 114, 151601 (2015)

Inclusive $A_{CP}(\overline{B} \to X_{(s+d)} \gamma)$ with lepton tagging

L. Pesantez, P. Urquijo, J. Dingfelder, et al. (Belle Collaboration), published in PRL 114, 151601 (2015)

After bkg subtraction
$$A_{CP}^{meas} = \frac{N(\ell^+) - N(\ell^-)}{N(\ell^+) + N(\ell^-)}$$

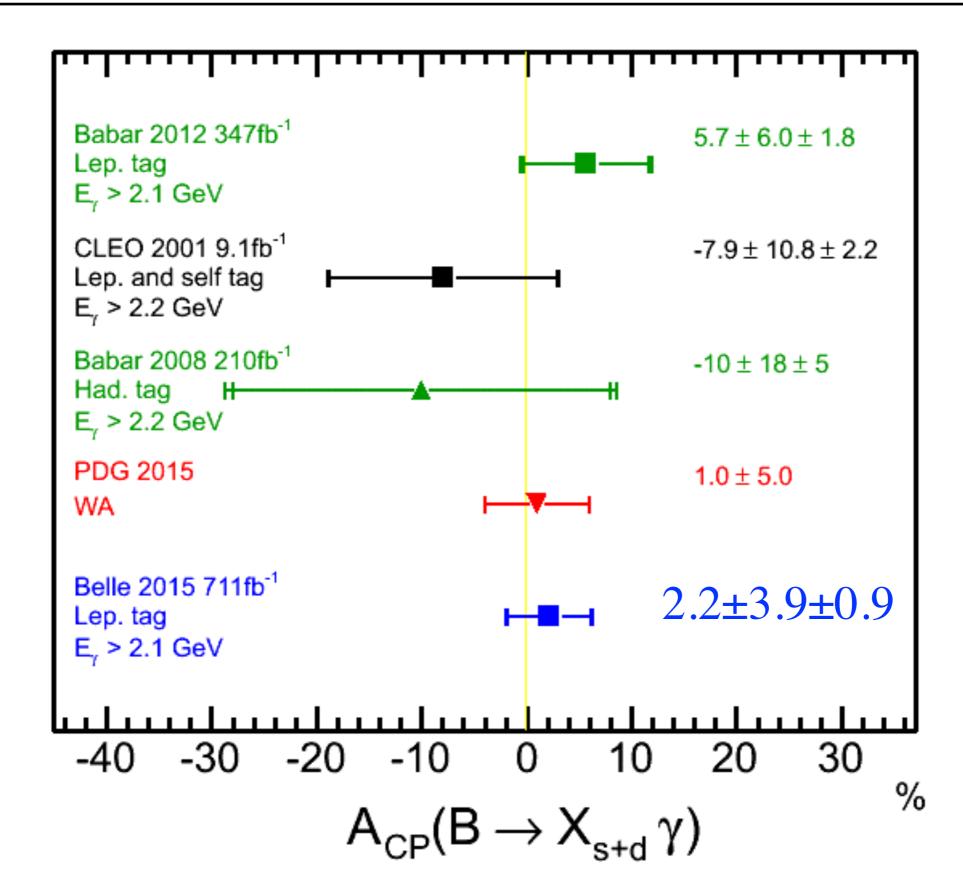

Corrected A_{CP}

$$A_{CP}^{true} = \frac{1}{1 - 2\omega} (A_{CP}^{meas} - A_{bkg} - A_{det})$$

Wrong tag factor ω : ~14% Oscillation, secondary, fakes

Bkg Asymmetry A_{bkg} : \sim (0.0±0.7)% in E_{γ} < 1.7 GeV

Detector induced A_{det}: \sim (0.0±0.3)% from $B \rightarrow XJ/\psi(\ell^+\ell^-)$



>> Result

$$A_{CP}(X_{s+d}\gamma) = (2.2 \pm 3.9_{stat} \pm 0.9_{syst})\%$$

 $E_{\gamma}^* > 2.1 \text{ GeV}$

The most precise measurement

Summary of Full-inclusive $A_{CP}(B \to X_{(s+d)}\gamma)$

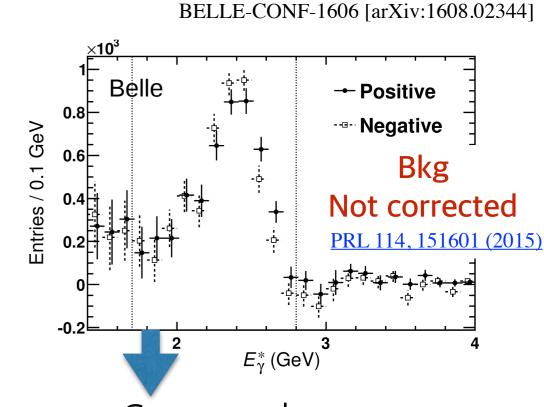
HQE parameters from $B \rightarrow X_{(s+d)}$

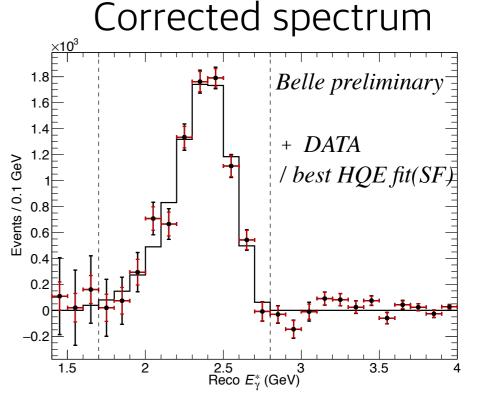
with lepton tagging

NEW Result!

>> Bkg-corrected spectrum

MC Bkg yields corrected with sideband events and control samples (π^0 , η , mis-identified hadrons)


> The largest systematic uncertainty is from bkg subtraction


>> HQE parameters measurement

Theoretical spectrum folded: (in BLNP-SF scheme [PRD 72, 073006 (2005)])

> ECAL resolution Doppler smearing (B-frame to CM-frame)

HQE parameters fitted to minimize χ^2 between the folded theoretical spectrum to the data spectrum.

Model-averaged selection efficiency ~2.5%

NEW Result!

Belle preliminary

BELLE-CONF-1606 [arXiv:1608.02344]

>> HQE parameters fit result

$$m_b(SF) = 4.626 \pm 0.028 \text{ GeV/c}^2$$

 $\mu_{\pi}^2(SF) = 0.301 \pm 0.063 \text{ GeV}^2$
 $\rho = -0.701$

$$HFAG 2014$$
 $(SF) = 4.569 \pm 0.023 \pm 0.018 \text{GeV/c}^2$

$$m_b(SF) = 4.569 \pm 0.023 \pm 0.018 \text{GeV/c}^2$$

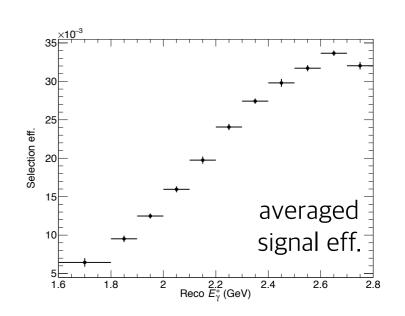
 $\mu_{\pi}^2(SF) = 0.145 \pm 0.089^{+0.020}_{-0.040} \text{ GeV}^2$
 $(\rho = -0.311)$

Good precisions achieved!

For example, PRD 72, 073006 (2005)

these values may be used to obtain $|V_{ub}|$ in BLNP-SF scheme lowering it by ~6%(3%) for endpoint analysis with $E_{lepton}>2.0(1.0)~GeV$, compared to the HFAG2014 value : $|V_{ub}|_{RINP-SF}^{HFAG} = (4.45 \pm 0.15_{-0.21}^{+0.20}) \times 10^{-3}$

>> Moments of the spectrum


Threshold	Mean (GeV)	$Variance \times 10^2 (GeV^2)$	Belle preliminary
1.8	$2.320 \pm 0.034 \pm 0.110 \pm 0.003 \ 4.5$	$258 \pm 1.118 \pm 3.612 \pm 0.108$	
1.9	$2.338 \pm 0.022 \pm 0.046 \pm 0.003$ 3.	$563 \pm 0.530 \pm 1.156 \pm 0.065$	
2.0	$2.360 \pm 0.015 \pm 0.021 \pm 0.003$ 2.	$869 \pm 0.290 \pm 0.379 \pm 0.047$	

Inclusive $\mathcal{B}(\overline{B} \to X_{(s+d)} \gamma)$ with lepton tagging

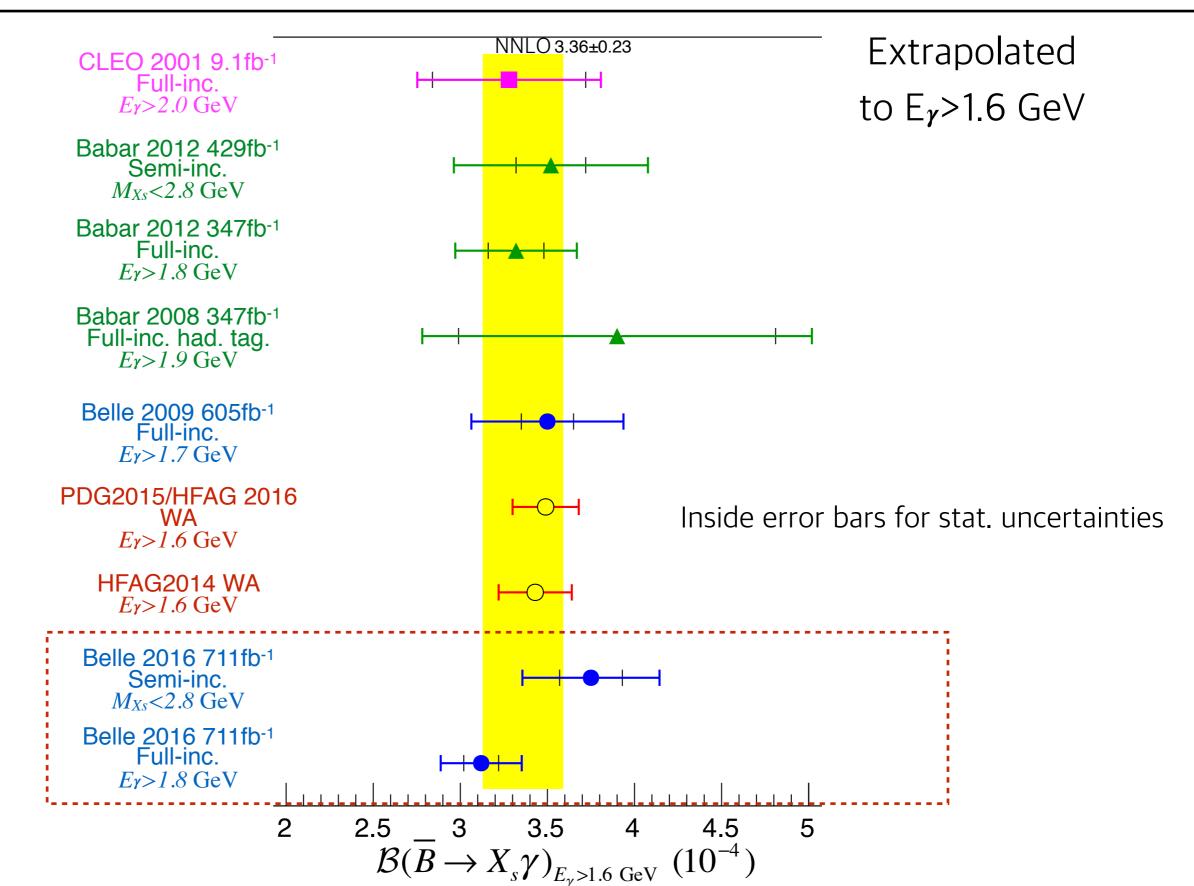
NEW Result!

BELLE-CONF-1606 [arXiv:1608.02344]

Detector resolution effect unfolded by SVD method Signal efficiency obtained in average of 3 signal models Threshold $E^*\gamma>1.8$ GeV chosen for the best result Interpolation factors obtained using all three models $b\to d\gamma$ is subtracted using $|V_{td}/V_{ts}|^2\sim4\%$

Belle preliminary Results

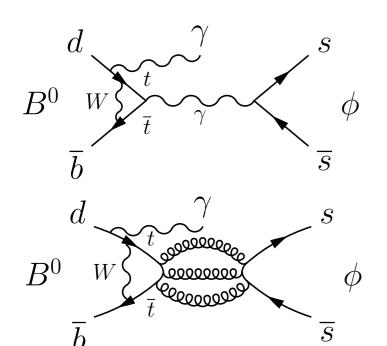
$$\mathcal{B}(\overline{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \, GeV} = (3.12 \pm 0.10_{\text{stat}} \pm 0.19_{\text{syst}} \pm 0.08_{\text{model}}) \times 10^{-4}$$


With different thresholds: Threshold
$$\mathcal{B}(\overline{B} \to X_s \gamma) \ (10^{-4})$$

$$1.7 \, \text{GeV} \quad 3.07 \pm 0.11 \pm 0.24 \pm 0.09$$

$$1.8 \, \text{GeV} \quad 3.02 \pm 0.10 \pm 0.18 \pm 0.08$$

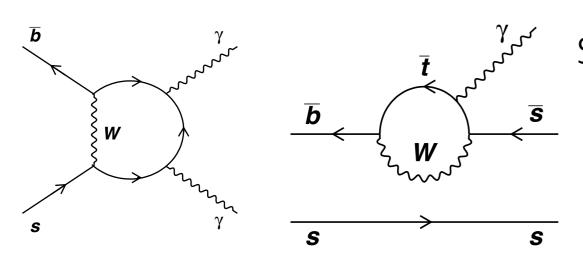
$$1.9 \, \text{GeV} \quad 2.95 \pm 0.09 \pm 0.14 \pm 0.07$$


Summary of $\mathcal{B}(\overline{B} \to X_{(s+d)}\gamma)$

14

$$\mathcal{B}(B^0 \to \phi \gamma) / \mathcal{B}(B_s^0 \to \phi \gamma) \& \mathcal{B}(B_s^0 \to \gamma \gamma)$$

D.Dutta, B.Bhuyan, et al. (Belle Collaboration), published in PRD 91, 011101(R) (2015) Z.King, B.Pal, A.J.Schwartz, et al. (Belle Collaboration), published in PRD 93, 111101 (2016)



No evidence for $B^0 \to \phi \gamma$ decay, setting its upper limit for BF:

the most stringent limit on BF

$$\mathcal{B}(B^0 \to \phi \gamma) < 1.0 \times 10^{-7}$$
 at 90% C.L.

SM Prediction : $O(10^{-11} \sim -12)$

SM prediction:
$$\mathcal{B}(B_s^0 \to \phi \gamma) \approx 4 \times 10^{-5}$$
$$\mathcal{B}(B_s^0 \to \gamma \gamma) \approx (0.5 - 1.0 \times 10^{-6})$$

In R-parity violating (RPV),

BF of $b \rightarrow s\gamma\gamma$ can be enhanced significantly

$$\mathcal{B}(B_s^0 \to \phi \gamma) = (3.6 \pm 0.5_{stat} \pm 0.3_{syst} \pm 0.6(f_s)) \times 10^{-5}$$

$$\mathcal{B}(B_s^0 \to \gamma \gamma) < 3.1 \times 10^{-6}$$
 at 90% C.L. the most stringent limit on BF

NEW Result

Summary

• Exclusive $b \to d$, $b \to s\gamma$, $b \to s\gamma\gamma$

$$\mathcal{B}(B^0 \to \phi \gamma) < 1.0 \times 10^{-7}$$

 $\mathcal{B}(B_s^0 \to \phi \gamma) = (3.6 \pm 0.4) \times 10^{-5}$
 $\mathcal{B}(B_s^0 \to \gamma \gamma) < 8.7 \times 10^{-6}$

• Semi-inclusive $b \rightarrow s \gamma$

$$\mathcal{B}(\overline{B} \to X_s \gamma) = (3.51 \pm 0.17_{stat} \pm 0.33_{syst}) \times 10^{-4}$$

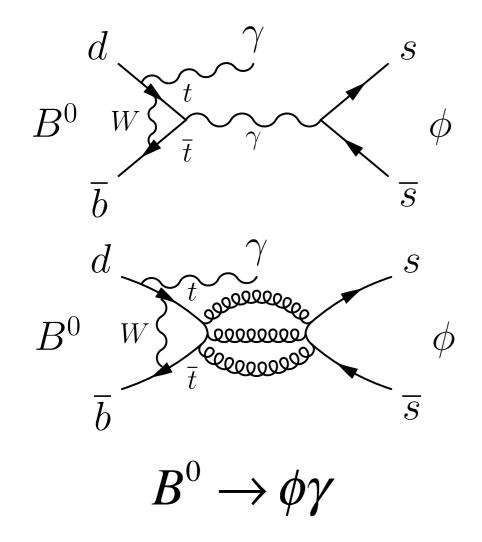
• Inclusive $b \rightarrow s\gamma$ with lepton tagging

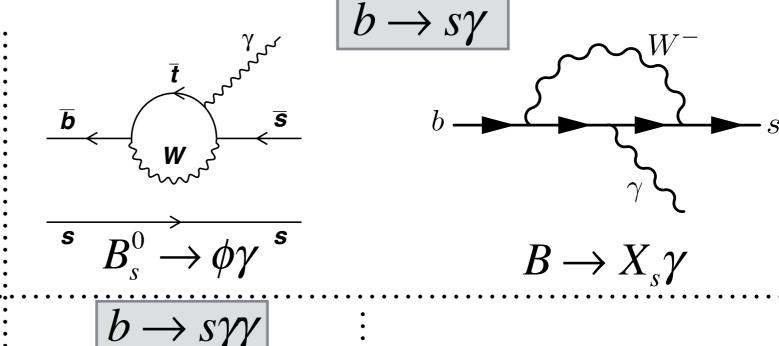
$$A_{CP}(X_{s+d}\gamma) = (2.2 \pm 3.9_{stat} \pm 0.9_{syst})\%$$
 $E_{\gamma}^* > 2.1 \text{ GeV}$ The most precise measurement!

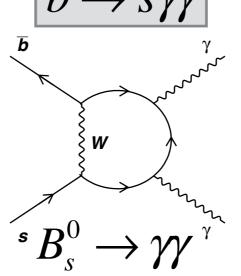
$$\left|\mathcal{B}(\overline{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \, GeV}\right| = (3.12 \pm 0.10_{\text{stat}} \pm 0.19_{\text{syst}} \pm 0.08_{\text{model}}) \times 10^{-4}$$

$$m_b(SF) = 4.626 \pm 0.028 \text{ GeV/c}^2$$

$$\mu_{\pi}^{2}(SF) = 0.301 \pm 0.063 \text{ GeV}^{2} \quad (\rho = -0.701)$$


The most precise measurements!




BACKUP

Feynman Diagrams

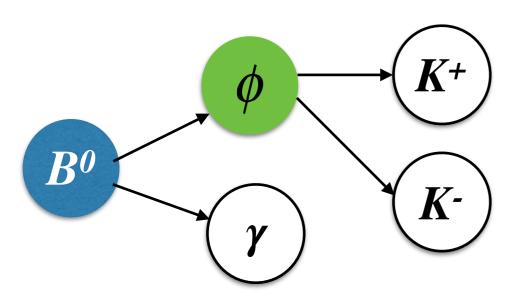
$b \rightarrow d$ annihilation

Observables:

BF, A_{CP} , Δ_{+-} ...

Integrated Luminosity at **Belle**

711 fb⁻¹ for Y(4S)


121 fb⁻¹ for Y(5S)

Electroweak penguin processes highly suppressed in SM corresponding to V_{td}/V_{ts} in CKM matrix W⁻ may be replaced with 2HDM H- or SSM squarks

Probe to New Physics

Search for $B^0 \to \phi \gamma$

Z.King, B.Pal, A.J.Schwartz, et al. (Belle Collaboration), published in PRD93, 111101 (2016 June 20)

Event Reconstruction

- ϕ reconstructed via $\phi \to K^+K^-$
- Candidate photon lying in [2.0,2.8] GeV

Background suppression

 $\pi^0 o \gamma\gamma$ and $\eta o \gamma\gamma$ >> 50% of them suppressed with likelihoods based on invariant mass

continuum SUPPression >> Neural Network trained with event topology variables suppressing 89% of qq while retaining 85% of signal

Background composition

- continuum events
- rare charmless b-decays
- a negligible contribution from $b \rightarrow c$ process

Search for $B^0 \to \phi \gamma$

Z.King, B.Pal, A.J.Schwartz, et al. (Belle Collaboration), published in PRD93, 111101 (2016 June 20)

Systematic uncertainty

Source	Uncertainty (events)			
PDF parameterization	$+1.21 \\ -1.14$			
Fit bias	$+0.00 \\ -0.08$			
$C_{\rm NN}$ selection efficiency	0.03			
$C_{\rm NN}$ background sample	0.02			
Tracking efficiency	0.02			
PID efficiency	0.05			
Photon reconstruction	0.08			
MC statistics	0.01			
$\mathcal{B}(\phi \!\to\! K^+K^-)$	0.03			
Number of $B\overline{B}$ events	0.05			
Total	$+1.22 \\ -1.15$			

Largest uncertainty from fixed PDF parameters

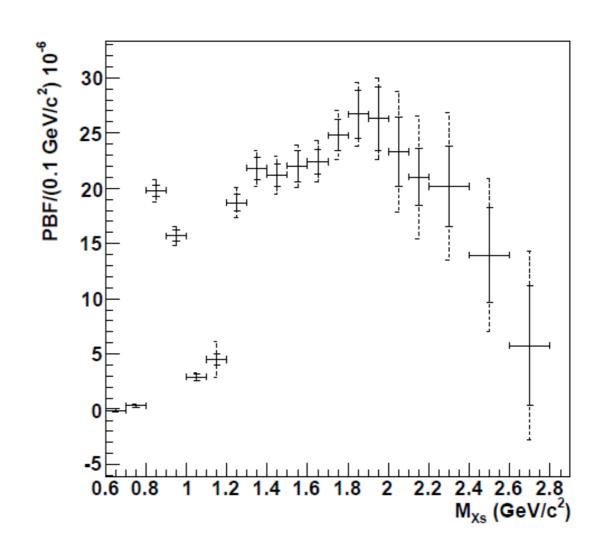
Fitting bias estimated from MC ensembles

Result

No evidence for $B^0 \to \phi \gamma$ decay, setting its upper limit for BF:

$$\mathcal{B}(B^0 \to \phi \gamma) < 1.0 \times 10^{-7}$$
 at 90% C.L.

previous upper limit^(*): $\mathcal{B}(B^0 \to \phi \gamma) < 8.5 \times 10^{-7}$


Reconstructed modes

Mode ID	Final state	Mode ID	Final state	Mode ID	Final state
1	$K^+\pi^-$	16	$K_s \pi^+ \pi^+ \pi^- \pi^0$	31	$K^+\eta\pi^-\pi^0$
2	$K_s\pi^+$	17	$K^+\pi^0\pi^0$	32	$K_s\eta\pi^+\pi^0$
3	$K^+\pi^0$	18	$K_s\pi^0\pi^0$	33	KKK
4	$K_s\pi^0$	19	$K^+\pi^-\pi^0\pi^0$	34	KKK_s
5	$K^+\pi^+\pi^-$	20	$K_s\pi^+\pi^0\pi^0$	35	KK_sK_s
6	$K_s\pi^+\pi^-$	21	$K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	36	$K^+K^+K^-\pi^-$
7	$K^+\pi^+\pi^0$	22	$K_s \pi^+ \pi^- \pi^0 \pi^0$	37	$K^+K^-K_s\pi^+$
8	$K_s\pi^+\pi^0$	23	$K^+\eta$	38	$K^{+}K^{+}K^{-}\pi^{0}$
9	$K^{+}\pi^{+}\pi^{-}\pi^{-}$	24	$K_s\eta$		
10	$K_s\pi^+\pi^+\pi^-$	25	$K^+\eta\pi^-$		
11	$K_s\pi^+\pi^0$	26	$K_s\eta\pi^+$		
12	$K_s\pi^+\pi^0$	27	$K^+\eta\pi^0$		
13	$K^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	28	$K_s \eta \pi^0$		
14	$K_s \pi^+ \pi^+ \pi^- \pi^-$	29	$K^+\eta\pi^+\pi^-$		
15	$K_s\pi^+\pi^+\pi^-\pi^0$	30	$K_s \eta \pi^+ \pi^-$		

Partial BF (semi-inclusive)

Table 9.12: The partial branching ratio on M_{X_s}

ie 5.12. The partial of	
M_{X_s} bin(GeV/c ²)	$\mathcal{BR}(10^{-6})$
0.6-0.7	-0.1±0.1±0.0
0.7-0.8	$0.3\pm0.1\pm0.1$
0.8-0.9	$19.8 \pm 0.5 \pm 0.9$
0.9-1.0	$15.7 \pm 0.5 \pm 0.7$
1.0-1.1	$2.9 \pm 0.3 \pm 0.2$
1.1-1.2	$4.8\pm0.5\pm1.5$
1.2-1.3	$18.7 \pm 0.8 \pm 1.1$
1.3-1.4	$21.8\pm1.0\pm1.3$
1.4-1.5	21.2±1.0±1.4
1.5-1.6	$22.0\pm1.4\pm1.3$
1.6-1.7	$22.4{\pm}1.1{\pm}1.5$
1.7-1.8	24.8±1.4±1.7
1.8-1.9	$26.7 \pm 2.2 \pm 1.9$
1.9-2.0	$26.3\pm2.9\pm2.3$
2.0-2.1	$23.3\pm3.1\pm4.5$
2.1-2.2	$21.0\pm2.6\pm4.9$
2.2-2.4	40.3±7.2±11
2.4-2.6	$27.9\pm 8.6\pm 11$
2.6-2.8	11.5±11±13

(a) Partial branching ratio. The first solid error is the statistical one and the second dashed error is a quadratic sum of the statistical and systematic errors.

Partial BF (full-inclusive)

E_{γ}^{*} bin	PBF	Stat	Syst	Model	
1.6-1.8	12.3	735.4	243.0	693.9	18.5
1.8-1.9	11.6	441.2	135.0	419.9	10.9
1.9-2.0	16.7	166.7	64.5	153.6	6.1
2.0-2.1	24.2	57.2	39.5	41.1	4.5
2.1-2.2	34.7	31.1	23.4	20.0	4.7
2.2-2.3	47.6	18.6	14.8	10.6	3.9
2.3-2.4	61.1	12.3	10.5	5.6	3.0
2.4-2.5	63.1	10.8	8.8	5.0	3.7
2.5-2.6	43.7	12.4	10.9	5.4	2.6
2.6-2.7	20.1	22.3	20.2	9.3	2.6

TABLE III. Partial branching fractions of the $\bar{B} \to X_{s+d} \gamma$ spectrum and uncertainties, in units of 10^{-6} .

Inclusive $\mathcal{B}(\overline{B} \to X_{(s+d)} \gamma)$ with lepton tagging

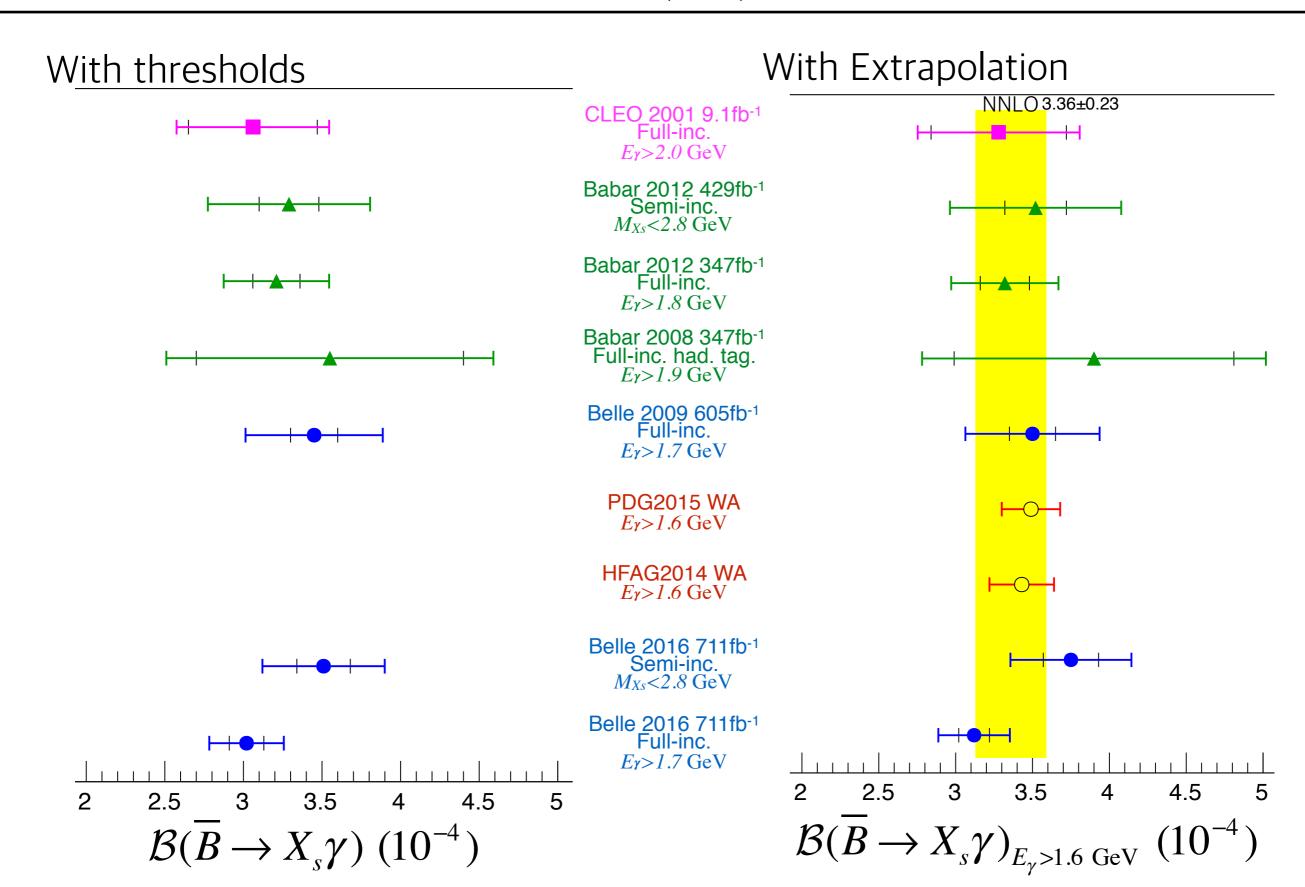
NEW Result!

REFERNCE

>> BF measurement

Before extrapolation

Belle preliminary


Threshold	$\mathcal{B}(\overline{B} \to X_{(s+d)}\gamma) \ (10^{-4})$	$\mathcal{B}(\overline{B} \to X_s \gamma) \ (10^{-4})$
$1.7\mathrm{GeV}$	$3.21 \pm 0.11 \pm 0.25 \pm 0.10$	$3.07 \pm 0.11 \pm 0.24 \pm 0.09$
$1.8\mathrm{GeV}$	$3.16 \pm 0.10 \pm 0.19 \pm 0.08$	$3.02 \pm 0.10 \pm 0.18 \pm 0.08$
$1.9\mathrm{GeV}$	$3.08 \pm 0.09 \pm 0.15 \pm 0.07$	$2.95 \pm 0.09 \pm 0.14 \pm 0.07$
$2.0\mathrm{GeV}$	$2.92 \pm 0.08 \pm 0.12 \pm 0.05$	$2.79 \pm 0.08 \pm 0.11 \pm 0.05$

BF thresholds (full-inclusive)

Threshold	Selection eff. (%)	Conversion factor	$\mathcal{B}_{s+d\gamma}$	$\mathcal{B}_{s\gamma}$
$1.7\mathrm{GeV}$	2.392 ± 0.070	1.0135 ± 0.0024	$3.21 \pm 0.11 \pm 0.25 \pm 0.10$	$3.07 \pm 0.11 \pm 0.24 \pm 0.09$
$1.8\mathrm{GeV}$	2.442 ± 0.059	1.0216 ± 0.0031	$3.16 \pm 0.10 \pm 0.19 \pm 0.08$	$3.02 \pm 0.10 \pm 0.18 \pm 0.08$
$1.9\mathrm{GeV}$	2.508 ± 0.055	1.0334 ± 0.0039	$3.08 \pm 0.09 \pm 0.15 \pm 0.07$	$2.95 \pm 0.09 \pm 0.14 \pm 0.07$
$2.0\mathrm{GeV}$	2.595 ± 0.045	1.0526 ± 0.0046	$2.92 \pm 0.08 \pm 0.12 \pm 0.05$	$2.79 \pm 0.08 \pm 0.11 \pm 0.05$

TABLE I. Inclusive $\bar{B} \to X_{s+d} \gamma$ and $\bar{B} \to X_s \gamma$ branching fractions for different energy thresholds up to 2.8 GeV, in units of 10^{-4} . The uncertainties are statistical, systematic and from the modeling.

Summary of $\mathcal{B}(\overline{B} \to X_{(s+d)}\gamma)$

Summary of
$$\mathcal{B}(\overline{B} \to X_{(s+d)}\gamma)$$