EXTRA DIMENSION VERSUS SUPERSYMMETRY AT THE LHC

S. Nandi

Oklahoma State University & Oklahoma Center for High Energy Physics

"[Work done in collaboration with Kirtiman Ghosh and Durmus Karabacak published in JHEP, and K. Ghosh, D. Karabacak and S. Nandi (work in progress)]

Talk presented at ICHEP 2016, in Chicago, IL, August 3-10, 2016."

Overview

- Introduction
 - Universal Extra Dimension
- 2 Model: nmUED
 - Constraints on the parameters
- 3 Phenomenology
 - Higgs Phenomenology
 - Collider Phenomenology at the LHC
- 4 Conclusion

minimal Universal Extra Dimension

In minimal UED \Rightarrow mUED, 5D space-time is $M^4 \times S_1/Z_2$

• There are KK-excitations of every SM particles

$$\Longrightarrow$$

- Can only be pair produced
- Gives Dark Matter

$$m_n = \frac{n}{R}$$

Radiative corrections

breaks mass
degeneracy.

 \implies Spectra depends on the cut-off scale Λ and R^{-1}

- Λ can not be too large, otherwise gauge couplings blow off.
- Spectra of KK-particles is pretty degenerate at each level

With only level-1 KK excitations, similar to compressed SUSY

However, most SUSY breaking scenarios do not give such a compressed spectra

- Pair production of SUSY particles and their decay gives high p_T jets plus missing transverse energy.
 - Classic signals of SUSY
 - Will distinguish SUSY from UED

However, LHC Higgs data do not agree with mUED at the 1σ level

Need to go beyond mUED \Longrightarrow non-minimal UED \Longrightarrow nmUED

Model: nmUED

$$S = S_{bulk} + S_{BLKT}$$

$$\begin{split} \mathcal{S}_{bulk} & = \int \mathrm{d}^4 \times \int_{-L}^L \mathrm{d}y \bigg[\sum_{\mathcal{A}}^{G,W,B} - \frac{1}{4} \mathcal{A}_{MN} \mathcal{A}^{MN} + \sum_{\Psi}^{Q,U,D,L,E} i \bar{\Psi} \overleftrightarrow{D}_M \Gamma^M \Psi - M_{\Psi} \bar{\Psi} \Psi \bigg] \\ \mathcal{S}_{bdry} & = \int \mathrm{d}^4 \times \int_{-L}^L \mathrm{d}y \bigg(\sum_{\mathcal{A}}^{G,W,B} - \frac{r_{\mathcal{A}}}{4} \mathcal{A}_{\mu\nu} \mathcal{A}^{\mu\nu} + \sum_{\Psi = Q,L} i r_{\Psi} \bar{\Psi}_L D_{\mu} \gamma^{\mu} \Psi_L \\ & + \sum_{\Psi = U,D,E} i r_{\Psi} \bar{\Psi}_R D_{\mu} \gamma^{\mu} \Psi_R \bigg) \times [\delta(y - L) + \delta(y + L)]. \end{split}$$

Parameters:

- Coefficients of the BLKT terms
 - \bullet $r_A \Longrightarrow r_g, r_W, r_B$
 - $r_{\psi} \Longrightarrow r_{U}, r_{D}, r_{E}$
- Also involve $M_{\psi} = \mu \theta(y) \Longrightarrow 5D$ fermion bulk mass.

Masses of the KK-gauge bosons and fermions are determined by solving transcendental equations

Constraints on the parameters

- $\frac{r_{\Psi}}{L} > \frac{\exp^{-2\mu L} 1}{2\mu L}$ to avoid ghosts and/or tachyons in the fermion sector.
- $r_A/L > -1$ to avoid ghosts and/or tachyons in the gauge sector.
- The bounds on the parameters are also obtained from the low-energy observables. [T. Flacke, K. Kong and S. C. Park, JHEP 1305, 111 (2013)]
 - KK-parity conserving interactions, \mathcal{L}_{002n}
 - $Z^{(2)}$ contribute to 4-fermi interactions
 - $r_A > 0.5L$ for $\mu L = -0.1$ and fixed R^{-1}
 - However, for $0 > \mu L > -0.03$ and $R^{-1} \approx 850$ GeV, g_{200} will be small and $M_{Z^{2n}}$ will be heavy enough to escape this bound
- EW precision test and the collider searches are insensitive to small values of μ , for example $\mu L = -0.02$

Phenomenology

We discuss the implications of nmUED in the context of the Higgs data and multijets plus E_T searches at the 8 TeV LHC

- Parameters of the model:
 - \bullet r_{ψ} , $\Psi = Q$, U, D, L, E
 - \bullet r_A , A = G, W, B
 - \bullet $\mu \Longrightarrow \mathsf{Bulk}$ fermion mass term
- Take universal boundary parameters for all quarks and leptons $\implies r_F$
- ullet For gauge sector, we choose $r_g
 eq r_W = r_B$
- Also choose $\mu L = -0.02$

Mass spectra for level-1 KK-excitations

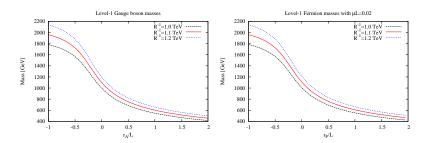


Figure : Level-1 gauge boson (left panel) and fermion (right panel) as a function of r/L for three different values of R^{-1} . For the level-1 fermion masses in the right panel, we consider $\mu = -0.02L$.

- Masses of KK-excitations are very sensitive to the BLKT parameters

 Large splitting even at the tree level
- Both level-1 KK-fermions and gauge bosons masses increase if we decrease r/L.

- $m_H = 125 \text{ GeV} \Longrightarrow \lambda = 0.129 \text{ in the SM}$
- $\lambda \to 0$ at $Q = 10^{11}$ GeV \Longrightarrow Vacuum instability
- \bullet For mUED, λ evolves much faster because of KK-excitations
 - $\lambda \rightarrow 0$ at 4-6 R^{-1}
 - For subsequent analysis, we take $\Lambda = 5R^{-1}$
- Higgs production measured in different channels at the LHC

$$\mu_i = \frac{(\sigma \times BR)_i}{(\sigma \times BR)_i^{SM}}$$

- $H \rightarrow gg$: Only KK-tower of top contributes
- $H \rightarrow \gamma \gamma$: KK-towers of top and W both contribute

[G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, PRD 88, 075008 (2013)]

$\gamma\gamma$ decay	/ channel	VV decay channel			
$\hat{\mu}^{ggF}$	$\hat{\mu}^{ ext{VBF}}$	$\hat{\mu}^{ggF}$	$\hat{\mu}^{ ext{VBF}}$		
0.98±0.28	1.72±0.59	0.91 ± 0.16	1.01±0.49		

Table: Combined best-fit Higgs signal strengths for different Higgs production and decay modes.

Results for mUED: has only 2 parameters $\Longrightarrow \Lambda$ and R^{-1}

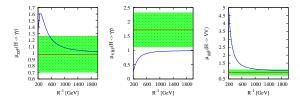


Figure : Higgs signal strengths relative to the SM expectations: $\mu_{ggF}^{H\to\gamma\gamma}$ (left panel), $\mu_{VBF}^{H\to\gamma\gamma}$ (middle panel) and $\mu_{ggF}^{H\to\gamma\nu}$ (right panel), in the context of mUED scenario as a function of R^{-1} . The combined best-fit values (from Table 1) of the abovementioned Higgs signal strengths are also presented. Can not fit data at 1σ level (see middle panel)

In addition to R^{-1} and Λ , we have several additional parameters coming from the BLK terms

- \bullet r_{ψ} , $\Psi = Q$, U, D, L, E
- \bullet r_A , A = G, W, B
- $\mu \Longrightarrow$ Bulk fermion mass term
- We choose cut-off scale $\Lambda = 5R^{-1}$
- Universal r_F
- But, for gauge sector, we choose $r_g \neq r_W = r_B$
- Also choose $\mu L = -0.02$

We have scanned the parameter space (r_W, r_F) to fit the Higgs data in different channels for 2 values of R^{-1} (1.2 and 1.3 TeV)

Continued.

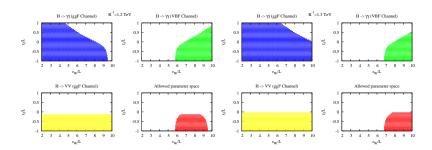


Figure : Scattered points in r_W/L - r_F/L plane which are consistent with the combined best-fit results of $\mu_{ggF}^{H\to\gamma\gamma}$, $\mu_{VBF}^{H\to\gamma\gamma}$, $\mu_{ggF}^{H\to\gamma\gamma}$ and all three together for $R^{-1}=1.2$ TeV (left panel) and $R^{-1}=1.3$ TeV (right panel).

All combined best-fit Higgs data is consistent with nmUED for large r_W and negative r_F

Collider Phenomenology at the LHC

- Multijets at high p_T plus large $\not \! E_T$ signal
- Use the LHC data for SUSY search and if we can reproduce the exact limits for nmUED using the allowed parameter space
- We use 8 TeV LHC data with $L=20.3~{\rm fb}^{-1}$
- SUSY limits: For $m_{\tilde{q}}=m_{\tilde{g}}<1.7$ TeV is excluded from jets + $\not\!\!E_T$ channel.
- Two questions:
 - Can we reproduce any SUSY signals from the level-1 KK particles using the allowed parameter space of nmUED?
 - What limits we can put on $q^{(1)}$ and $g^{(1)}$ masses in nmUED ?

nmUED Benchmark point for multijets analysis

Benchmark Point (BP)							
R^{-1}	ΛR	μ L	r_g/L	r _F /L	r_W/L		
1.2 TeV	5	-0.02	-0.05	-0.42	7.4		
Masses in GeV							
$m_{Q^{(1)}}$	$m_{L^{(1)}}$	$m_{G^{(1)}}$	$m_{W^{(1)\pm}}$	$m_{Z^{(1)}}$	$m_{\gamma^{(1)}}$		
1800	1800	1265	275	275	260		

- Produce q^1q^1 , g^1g^1 , q^1g^1
- Decay these using the spectra for the benchmark point
- Apply the same cuts as ATLAS multijets SUSY searches

Results: ATLAS cuts


Cuts	A (2-			-jets)	C (4	jets <u>)</u>	D		E (6-jets)	_
	L	М	M		M	ı	(5-jets)	L	M	1
$\not\models_T > [GeV]$	160									
$ ho_T^{j_1} > [GeV]$	130									
$p_T^{j_2} > [GeV]$	60									
$p_T^{j_3} > [GeV]$	-		60		60		60	60		
$p_T^{j_4} > [GeV]$	-		-		60		60	60		
$p_T^{j_5} > [GeV]$	-		-		-		60	60		
$p_T^{j_6} > [GeV]$	-							60		
$\Delta \phi(j_i, \vec{E}_T)_{min} >$	0.4 {i=1,2,3 if $p_T^{j3} > 40 \text{ GeV}$ }			0.4 {i=1,2,3}, 0.2 $p_T^{j_i} > 40 \text{ GeV}$						
$\not\!\!E_T/M_{eff}(N_j) >$	0.2	-	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25
m _{eff} (incl.) [TeV]	1.0	1.6	1.8	2.2	1.2	2.2	1.6	1.0	1.2	1.5
σ_{BSM} [fb]	66.07	2.52	0.73	0.33	4.00	0.12	0.77	4.55	1.41	0.41

Table : Cuts used by the ATLAS collaboration to define the signal regions. $\Delta \phi(jet, \vec{\xi}_T)$ is the azimuthal separations between \vec{E}_T' and the reconstructed jets. $m_{eff}(N_j)$ is defined to be the scalar sum of the transverse momenta of the leading N jets together with $\vec{\xi}_T$. However, for $m_{eff}^{incl.}$, the sum goes over all jets with $\rho_T > 40$ GeV. Last column corresponds to the 95% C.L. observed upper limits on the non-SM contributions σ_{BSM} .

Results: Cut-flow table.

			LIED	
Process	Supersyn	nmUED		
	$\tilde{g}\tilde{g}$ one	$g^{(1)}g^{(1)}$ one-step		
Point	$m_{\tilde{g}} = 12$	$m_{g(1)} = 1265 \text{ GeV}$		
	$m_{\tilde{\chi}_1^{\pm}} = 8$	865 GeV	$m_{\tilde{W}(1)\pm} = 865 \text{ GeV}$	
	$m_{\tilde{\chi}_1^0} = 4$	$m_{ ilde{\gamma}(1)} = 465 \; { m GeV}$		
Cuts		n %		
(E-tight)	ATLAS	Our Simulation	Our Simulation	
	Appendix-C of [?]			
0-lepton	63.5	66.1	57.3	
<i>E/_T</i> > 160 GeV	55.6	57.6	54.7	
$p_T^{j_1} > 130 \text{ GeV}$	55.6	57.5	54.7	
$p_T^{j_2} > 60 \text{ GeV}$	55.6	57.5	54.6	
$p_T^{j_3} > 60 \text{ GeV}$	55.4	57.3	51.8	
$p_T^{j_4} > 60 \text{ GeV}$	53.4	55.2	41.3	
$p_T^{j_5} > 60 \text{ GeV}$	46.3	47.1	27.4	
$ ho_T^{j_6} > 60 \; { m GeV}$	31.7	31.1	15.0	
$\Delta \phi(j_i, E/T), i = 1, 2, 3$	26.5	26.1	12.2	
$\Delta\phi(j, E_T), p_T^j > 40 \text{ GeV}$	21.3	21.6	9.7	
$E_T/m_{eff}(N_i) > 0.25$	12.0	12.7	4.7	
$m_{\rm eff}({\it incl.}) > 1.5~{ m TeV}$	7.9	8.3	4.5	

- Our simulation agrees very well with the ATLAS simulations

Results

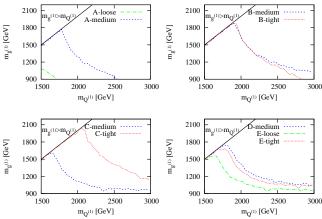


Figure : The exclusion limits on m_{Q^1} - m_{g^1} plane from 8 TeV 20.3 inverse femtobarn integrated luminosity ATLAS data for different ATLAS defined signal regions. We have assumed fixed mass for the level-1 electroweak KK gauge bosons ($m_{Q^1}^{(1)\pm} = m_{Z(1)} = 275$ GeV and $m_{W^1} \gamma^{(1)} = 260$ GeV).

For $m_{q^1} = m_{g^1}$, the limit is 2.1 TeV.

Conclusion

- Though mUED signals are very different from the SUSY signals at the LHC, nmUED signals are not.
- With switable choice of BLK terms, we can reproduce any multijets + ∉_T signal given by SUSY in nmUED.
- If enhancement in $H \to \gamma \gamma$ persists in LHC Run 2, it is allowed in nmUED, but not in mUED.
- nmUED with the assumption $m_{q^1}=m_{g^1}$, 8 TeV LHC limit is ~ 2.1 TeV.
- Since nmUED can reproduce any SUSY signals, the production of level-2 KK excitations will be the key to distinguish between extra-dimension and supersymmetry if any signal is seen.