ICHEP 2016 08.05.2016, Chicago

The Critical Line of the QCD phase diagram from Lattice QCD

C. Bonati¹, M. D'Elia¹, M. Mariti¹, M. Mesiti¹, F. Negro¹ and F. Sanfilippo² (PRD90 114025, PRD92 054503)

Dipartimento di Fisica dell'Università di Pisa and INFN, Sezione di Pisa, Pisa, Italy
 School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom

Outline

- Introduction
 - The phase diagram for strongly interacting matter Theory: the chiral/deconfinement crossovers, Experiments: chemical freeze-out point
 - Theory from first principles: Lattice QCD Basics, $T \neq 0, \mu_B \neq 0 \rightarrow \dots$
 - The sign problem and proposed solutions Taylor expansion, Reweighting, Analytic continuation (...)
- Setup
 - The critical line of QCD and Analytic continuation Basics, $T \neq 0, \mu_B \neq 0 \rightarrow$ the sign problem!
 - Renormalized observables and the definitions of $T_c(\mu)$ Chiral condensate, renormalization (I) and (II), Chiral susceptibility Discretization used,

Parameters, Statistics

- Numerical results
 - Effects of $\mu_s \neq 0$
 - Results extrapolated to the continuum
- Comparison with other determinations
- Conclusions and outlooks

QCD at finte T and zero density

- Low temperature: Confinement, (spontaneous) chiral symmetry breaking
- High temperature: Deconfinement, chiral symmetry restoration

Left: Polyakov loop $(e^{-FQ/T})$ as a function of temperature.

Right: Chiral condensate ($\sim \langle \bar{\psi}\psi \rangle$) (from JHEP 1009 (2010) 073)

Lattice data indicates no real transitions at " T_c ", only Crossovers (for physical values of the quark masses)

QCD at finite T and finite baryon density

Conjectured Phase diagram for QCD at finite density

Goal: Study $T_c(\mu_B)$, in physically relevant conditions (strangeness neutrality and Z/A = 0.4).

Lattice QCD and the sign problem at finite density

A Wick rotation + temporal periodic 1 boundary conditions allow us to study QCD at finite temperature:

$$t = -i\tau$$
 \Rightarrow $\operatorname{Tr}e^{-iHt} = \operatorname{Tr}e^{-H\tau} = \operatorname{Tr}e^{-H/T} [\tau = 1/T]$

Lattice discretization \Rightarrow Finite number of degrees of freedom \Rightarrow The **Path Integral** become a *finite dimensional integral*, evaluable with Montecarlo and Importance Sampling methods *if* $S_G[U]$ *and* det M *are real*:

$$Z = \int DU e^{-S_{\mathbf{G}}[U]} \prod_{f} \det M_{f}[\mu_{f}, U]$$

Various possible choices for the discretized action, for both S_G and M_f Unfortunately, in the presence of a *real* nonzero chemical potential, det M_f is complex. \Rightarrow Importance sampling methods don't work in this situation

Antiperiodic for Fermion fields

Sign problem: Ways around

Applied to the theory at the physical point:

- ullet Analytic Continuation from imaginary μ [Our Choice]
- ullet Taylor expansion from $\mu=0$ [precision issues with higher order derivatives on the lattice, due to lack of self-averaging]

Other methods: [Huge effort going on]

- Reweighting from the $\mu=0$ ensemble [scales badly with volume]
- Canonical method [the sign problem is back in a different form]
- Strong coupling methods + Reweighting
- Complex Langevin
- Lefschetz Thimbles
- Density of States methods
- Dual formulations [rewriting the partition function in terms of other variables]

The pseudocritical line and analytic continuation

At lowest order in μ , the pseudocritical line can be parameterized as:

(odd order terms are forbidden by charge conjugation symmetry of QCD)

Analytic continuation from imaginary μ_B

For purely imaginary μ , the fermion determinant is real positive, and the sign problem is non existent.

With the transformation $\mu_B = i\mu_{B,I}$, the pseudocritical line parameterization is **modified as follows**:

$$\frac{T_c(\mu_{B,I})}{T_c} = 1 + \kappa \left(\frac{\mu_{B,I}}{T_c(\mu_{B,I})}\right)^2 + O(\mu_{B,I}^4)$$

 κ can be computed on the lattice.

Observables: chiral condensate

In order to locate the position of the pseudo transition on the phase diagram, we compute the order parameter for chiral symmetry, the **Light chiral condensate**:

$$\langle \bar{\psi}\psi \rangle_{ud} = \frac{T}{V} \frac{\partial \log Z}{\partial m_{ud}} = \langle \bar{u}u \rangle + \langle \bar{d}d \rangle$$

To locate T_c , fit with the function

$$\langle ar{\psi}\psi
angle ^{r}=a_{1}+b_{1}$$
 arctan $\left[c_{1}\left(T-T_{c}
ight)
ight]$

Observables: chiral susceptibility

We also compute its susceptibility, the Light chiral susceptibility:

$$\chi_{ar{\psi}\psi} \equiv rac{\partial \langle ar{\psi}\psi
angle_{\it ud}}{\partial \it m_{\it ud}}$$

To locate T_c , fit with the function

$$\chi^{r}_{\bar{\psi}\psi}(T)/m_{\pi}^{4} = \frac{A_{2}}{(T - T_{c})^{2} + B_{2}^{2}}$$

Finding κ at imaginary μ_B

Once we obtained the pseudocritical temperature T_c for each value of $\mu_{B,I}$, we can find the curvature with a simple fit.

To evaluate κ , fit for the critical line:

$$\frac{T_c(\mu_{B,I})}{T_c} = 1 + \kappa \left(\frac{\mu_{B,I}}{T_c(\mu_{B,I})}\right)^2$$

Effects of a nonzero strange quark chemical potential μ_s 32³ × 8 Lattice

Critical line in the Temperature/Imaginary Baryon chemical potential plane, from the renormalized chiral susceptibility

[Bonati et al., 15]

We studied the setups $\mu_s = 0$ and $\mu_s = \mu_I$.

Physical conditions lie between these two cases

Result: κ estimates from the two setups are compatible, if a quartic term is included (or if the fit range is reduced) in the $\mu_s = \mu_l$ case

Conclusion: results for κ with $\mu_s = 0$ are relevant for heavy ion collisions.

Critical line and continuum Limit of κ

Method I: We evaluated the curvature κ for each N_t (6,8,10,12) and then performed the continuum limit extrapolation on κ itself, assuming finite lattice spacing corrections are of the form $const/N_t^2$.

Method II: We extrapolated the values of the observables to the continuum limit (taking data from $N_t=8,10,12$), obtaining $\lim_{a\to 0} T_c(\mu_B)$. We then obtained κ by fitting $T_c(\mu_B)$ data.

Comparison with other determinations

Comparison with other determinations of the curvature of the critical line.

Conclusions and outlooks

Our results:

- We located the critical line $T_c(\mu_{I,B})$ with a fitting procedure using chiral observables, and obtained an estimate for its curvature at $\mu_B=0$
- We investigated the effects of including a nonzero strange quark potential ($\mu_s = \mu_I = \mu$). Considering a quartic term, the curvature of the critical line for $\mu_s = \mu_I$ or $\mu_s = 0$ is compatible within errors. Our continuum extrapolated value for the curvature of the critical line is

$$\kappa = 0.0135(20)$$
.

Comments and outlooks:

- General consensus among the latest lattice determinations
- How to compare with experimental/phenomenological data more precisely? [Lattice Simulations are performed at equilibrium]

Backup slides

Chemical potential and sign problem

In the **continuum theory**, a chemical potential coupled with quark number can be introduced:

$$\mu_f N_f = \mu_f \int d^3x \; \bar{\psi}_f \gamma_0 \psi_f$$

On the lattice, the quark chemical potential associated to the flavour f is introduced by multiplying the gauge links in the fermion matrix $M_f[U]$ in the temporal direction by $e^{-a\mu_f}$.

Unfortunately, this causes the so called **sign problem**. When $\mu_f = 0$,

$$\left(\not\!\!D + m \right)^\dagger = \gamma_5 \left(\not\!\!D + m \right) \gamma_5 \ \to \det \left(\not\!\!D + m \right) \in \mathbb{R}$$

When $\mu_f \neq 0$ this is not true any more:

$$\gamma_5 \left(\not D + m - \gamma_0 \mu \right) \gamma_5 = \left(- \not D + m + \gamma_0 \mu \right) = \left(\not D + m + \gamma_0 \mu^* \right)^{\dagger}$$

⇒ The fermion determinant is complex!²

 $^{^2}$ Notice that this is not the case if $\Re \mu = 0$

Path Integral formulation: $Z = \int DAD\bar{\psi}D\psi e^{-i\int d^4x \mathcal{L}[A,\bar{\psi},\psi]}$

$$extstyle D_{\mu} = \partial_{\mu} - extstyle extstyl$$

$$\mathcal{L} = -\frac{1}{2g^2} \operatorname{Tr} \left\{ \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right\} + \sum_{\boldsymbol{f}} \bar{\psi}_{\boldsymbol{f}} \left(i \gamma^{\mu} D_{\mu} - m_{\boldsymbol{f}} \right) \psi_{\boldsymbol{f}}$$

Chiral Symmetry: In the vanishing mass limit the Lagrangian is invariant under the transformations

$$\psi_L' = U\psi_L, \ \psi_R' = U^\dagger \psi_R$$

Where ψ_I and ψ_R represent the left- and right-handed parts of all the spinors, and U is a $SU(N_f)$ matrix which mix different flavours. The light quark condensate $\langle \bar{u}u + dd \rangle$ is an order parameter for chiral symmetry breaking.

Numerical setup

- At the physical point (line of constant physics, parameters taken from [Aoki et al., 09]) $N_t=6,8,10,12$ lattices.
- Study of the $\mu_s = \mu_I \neq 0$ (32³x8 only) and $\mu_s = 0$ cases.
- Tree level Symanzik improved gauge action with $N_f = 2 + 1$ flavours of twice-stouted staggered fermions.
- Used lattices with aspect ratio = 4
- Also performed simulations at zero temperature for subtractions (32⁴,48³x96).
- Observables evaluated with noisy estimators, with 8 random vectors per quark.

Simulations run on IBM BG-Q at CINECA (Bologna, Italy) and on the Zefiro Cluster (INFN - Pisa).

Lattice	$16^3 \times 6$	$24^3 \times 6$	$32^3 \times 6$
$i\mu/(\pi T)$	0.00 0.20 0.24 0.275	0.00 0.24 0.275	0.00 0.24 0.275
Lattice	$32^{3} \times 8$	$40^{3} \times 10$	$48^{3} \times 12$
$i\mu/(\pi T)$	0.00 0.10 0.15	0.00 0.20	0.00 0.20
	0.20 0.24 0.275 0.30	0.24 0.275	0.24 0.275

κ with other prescriptions

In order to better compare our results with those of [Endrodi et al., 11] (same lattice action, but using the Taylor expansion method), we have located $T_{c}(\mu_{B})$ using the chiral condensate (II), using the following equation

$$\langle \bar{\psi}\psi\rangle_{(2)}^{r}(\mathcal{T}_{c}(\mu_{B}),\mu_{B}) = \langle \bar{\psi}\psi\rangle_{(2)}^{r}(\mathcal{T}_{c}(0),0)$$

Our result for the curvature using this method is $\kappa=0.0110(18),$ to be compared with $\kappa=0.0066(20)$.

Figure from [Endrodi et al., 11] Taylor expansion:

$$\frac{\partial T_{c}}{\partial \mu^{2}} = -\left. \frac{\partial^{2} \langle \bar{\psi}\psi \rangle_{(2)}^{r}}{\partial \mu^{2}} \right|_{T=T_{c},\mu=0} \left(\frac{\partial \langle \bar{\psi}\psi \rangle_{(2)}^{r}}{\partial T} \right)^{-1} \bigg|_{T=T_{c},\mu=0}$$
(1)

Effects of μ_s 32³ × 8 Lattice

(From [Bonati et al., 15])

0.08

Empty Red: κ , linear fit ($\mu_{\rm s}=\mu_{\rm I}$ data) Full Red: κ , lin+quad fit ($\mu_{\rm s}=\mu_{\rm I}$) Empty Black: κ , linear fit ($\mu_{\rm s}=0$) Empty Black: κ , lin+quad fit ($\mu_{\rm s}=0$) Right: κ from combined (lin+quad) fit

 $(\mu_{II}^{(max)}/(\pi T))^2$

0.04 0.06

Finite size effects On $N_t = 6$ lattices

Estimates of κ . Black : Renormalized Chiral Condensate (1), Red : Renormalized Chiral Susceptibility ; Right: The chiral condensate on the $24^3 \times 6$ lattice, with the data for $\mu_I = 0$ on the $32^3 \times 6$ lattice

⇒ Aspect ratio 4 is enough.

Tentative extrapolation at real μ_b

Tentative continuation to real chemical potential, and comparison to the experimental data from chemical freezeout. Note: some assumptions about the higher orders in μ_B have been made.

Continuum limit of Observables

• For the renormalized chiral condensates, we used the formula

$$\langle \bar{\psi}\psi \rangle^r(T) = A_1 + B_1 \arctan \left[C_1 \left(T - T_c \right) \right]$$

to fit the data from all values of N_t simultaneously. We added a N_t dependency to T_c $(T_c(N_t) = T_c(N_t = \infty) + const./N_t^2)$ and a similar one to C_1 .

• For the renormalized chiral susceptibility, we used the formula

$$\chi_{\bar{\psi}\psi}^{r}(T) = \frac{A_2}{(T - T_c)^2 + B_2^2}$$

where we added a dependency on N_t similar to $T_c(N_t) = T_c(N_t = \infty) + const./N_t^2$ for all parameters.

Continuum limit of Observables

Values of the curvature

1st method (continuum limit of κ):

$$\kappa_{\bar{\psi}\psi,1} = 0.0134(13)$$
 $\kappa_{\bar{\psi}\psi,2} = 0.0127(14)$
 $\kappa_{\chi} = 0.0132(10)$

2nd method (continuum limit of observables):

$$\kappa_{\bar{\psi}\psi,1} = 0.0145(11)$$
 $\kappa_{\bar{\psi}\psi,2} = 0.0138(10)$
 $\kappa_{\chi} = 0.0131(12)$

Values of T_c obtained with the continuum limit of the observables, fit with the form $T_c(\mu_{B,I})/T_c = 1 + \kappa [\mu_{B,I}/\pi T_c(\mu_{B,I})]^2$.

Relation between μ_u, μ_d, μ_s and μ_B, μ_Q, μ_S

Key idea:

$$\mu_{u}N_{u} + \mu_{d}N_{d} + \mu_{s}N_{s} = \mu_{B}B + \mu_{Q}Q + \mu_{S}S$$

Relation between conserved quantities:

$$B = n_u/3 + n_d/3 + n_s/3$$

$$Q = 2n_u/3 - n_d/3 - n_s/3$$

$$S = -n_s$$

Relations between chemical potentials:

$$\mu_B = \mu_u + 2\mu_u$$
 $\mu_u = \mu_B/3 + 2\mu_Q/3$
 $\mu_Q = \mu_u - \mu_d$ $\mu_d = \mu_B/3 - \mu_Q/3$
 $\mu_S = \mu_d - \mu_s$ $\mu_s = \mu_B/3 - \mu_Q/3 - \mu_S$

Observables: chiral condensate and chiral susceptibility

Light chiral condensate - Definition:

$$\langle \bar{\psi}\psi\rangle_{ud} = \frac{T}{V}\frac{\partial \log Z}{\partial m_{ud}} = 2\frac{T}{V}\langle \text{Tr}M_I^{-1}\rangle = \langle \bar{u}u\rangle + \langle \bar{d}d\rangle$$

Two possible renormalizations:

As in [Cheng et al., 08]:

Alternatively [Endrodi et al., 11]:

$$\langle \bar{\psi}\psi\rangle_{(\mathbf{1})}^{\mathbf{r}} \equiv \frac{\langle \bar{\psi}\psi\rangle_{ud}(T) - \frac{2m_{ud}}{m_{s}}\langle \bar{s}s\rangle(T)}{\langle \bar{\psi}\psi\rangle_{ud}(0) - \frac{2m_{ud}}{m_{s}}\langle \bar{s}s\rangle(0)}$$

$$\langle \bar{\psi}\psi \rangle_{(2)}^r \equiv (-) \frac{m_{ud}}{m_{\pi}^4} \left(\langle \bar{\psi}\psi \rangle_{ud} - \langle \bar{\psi}\psi \rangle_{ud} (T=0) \right)$$

[to make a more significant comparison]

Light chiral susceptibility - Definition:

$$\chi_{\bar{\psi}\psi} \equiv \frac{\partial \langle \bar{\psi}\psi \rangle_{ud}}{\partial m_l}$$

We have chosen this renormalization[Y.Aoki et al., 06]:

$$\chi^{r}_{\bar{\psi}ih}(T) \equiv m^{2}_{ud} \left[\chi_{\bar{\psi}\psi}(T) - \chi_{\bar{\psi}\psi}(0) \right]$$

the role of the strange quark chemical potential μ_s

experimental conditions = strangeness neutrality ($\langle n_s \rangle = 0$), z = 0.4a.

note that this **does not** imply $\mu_s=0$, because in general, e.g. $\partial \textit{n}_s/\partial \mu_u\neq 0$.

this means μ_u, μ_d, μ_s should be tuned (for each each temperature) to reproduce experimental conditions.

this entails $\mu_u \simeq \mu_d = \mu_l$, and (due to interactions) $\mu_s \simeq 0.25 \mu_l$ (for $t=t_c$).

[bazavov et al., 14] [borsanyi et al.,13] [bellwied et al.,15]

more basic question: what is the effect of a nonzero strange quark chemical potential?