Diffractive cross sections and hard diffraction at the LHC

A. Vilela Pereira on behalf of the ATLAS, CMS and TOTEM Collaborations

Universidade do Estado do Rio de Janeiro

38th International Conference on High Energy Physics - Chicago August 3 - 10, 2016

Outline

Total, inelastic & diffractive cross section measurements at the LHC

Hard diffraction

High-β*/Low pile-up running with proton tagging

CT-PPS and AFP: proton spectrometers at highluminosity

ATLAS, CMS & TOTEM @ LHC

ATLAS, CMS & TOTEM @ LHC

The ATLAS detector

ATLAS - ALFA

Roman Pot (RP) (vertical) stations at ~ 240 m from ATLAS IP.

8 fiber detectors (2 x 10 layers; 0.5 mm fibers; resolution ~ 35 um).

Fully integrated in ATLAS DAQ.

Material taken from P.Fassnacht Forward Physics Working Group workshop - March 2016

The CMS detector

The CMS detector

Forward detectors @ CMS

Detector configuration during 2010 - 2011

140m

 $(|\eta| > 8.1)$

CASTOR

W-absorbers/quartz plates 12 longitudinal modules/16 azimuthal sectors

Hadronic Forward (HF) $(-6.6 < \eta < -5.2)$

CMS Hadronic Forward (HF)

 $(3.0 < |\eta| < 5.0)$

140m

ZDC

Hadron Forward:

@11.2m from interaction point

Rapidity coverage: $3 < |\eta| < 5$

Steel absorbers/quartz fibers (Long+short fibers)

 $0.175 \times 0.175 \, \eta/\phi$ segmentation

Acceptance limited to $|\eta| < 4.9$ at analysis level

Forward detectors @ CMS

Detector configuration during 2010 - 2011

Forward (I

140m

CASTOR

 $(|\eta| > 8.1)$

Analogous forward detector instrumentation, at large Hadroni pseudorapidity, present as well in ATLAS, in particular:

> Forward Calorimeter (FCal): Liquid argon sampling calorimeter (3.1 < $|\eta|$ < 4.9).

Minimum-bias trigger scintillators (MBTS):

In front of each endcap calorimeter. Inner and outer octagonal rings w/8 and 4 counters respectively (2.07 < $|\eta|$ < 3.86).

W-absorbers/quartz pla <u>LUCID</u>: Forward Cherenkov detector (5.6 < $|\eta|$ < 5.9).

Hadron Forward:

@11.2m from interaction point

Rapidity coverage: $3 < |\eta| < 5$

Steel absorbers/quartz fibers (Long+short fibers)

 $0.175 \times 0.175 \, \eta/\phi$ segmentation

Acceptance limited to $|\eta| < 4.9$ at analysis level

The TOTEM detectors

T1: $3.1 < |\eta| < 4.7$

T2: $5.3 < |\eta| < 6.5$

Detect charged particles

from collision.

Vertical RPs

Horizontal RPs

Cylindrical RPs (w/ CT-PPS)

Roman Pots (RPs)

Detect outgoing protons at very small angles (elastic, diffractive and photon-induced processes).

Material taken from N. Minafra - Low-x 2016

Outline

Total, inelastic & diffractive cross section measurements at the LHC

The total and (in)elastic cross sections

Luminosity dependent:

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \left. \frac{\text{d}N_{\text{el}}}{\text{d}t} \right|_0$$

Luminosity independent:

$$\sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{dN_{\text{el}}/dt|_0}{N_{\text{el}} + N_{\text{inel}}}$$

ρ-independent:

$$\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} \left(N_{\text{el}} + N_{\text{inel}} \right)$$

TOTEM:

EPL 96(2011) 21002 EPL 101(2013) 21002 EPL 101(2013) 21004 PRL 111 (2013) 012001

ATLAS STDM-2015-22

arXiv:1607.06605

The total and (in)elastic cross sections

Luminosity dependent:

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \left. \frac{\text{d}N_{\text{el}}}{\text{d}t} \right|_0$$

Luminosity independent:

More on elastic scattering:

Measurement of the total cross section from elastic scattering in pp-collisions at $\sqrt{s}=8$ TeV with the ATLAS detector, <u>arXiv:1607.06605</u>

Measurement of Elastic pp Scattering at $\sqrt{s} = 8$ TeV in the Coulomb-Nuclear Interference Region – Determination of the ρ Parameter and the Total Cross-Section, <u>CERN-PH-EP-2015-325</u>

Evidence for Non-Exponential Elastic Proton-Proton Differential Cross-Section at Low |t| and $\sqrt{s} = 8$ TeV by TOTEM, Nucl. Phys. B 899 (2015) 527-546

ATLAS STDM-2015-22 arXiv:1607.06605

EPL 96(2011) 21002 EPL 101(2013) 21002 EPL 101(2013) 21004

TOTEM:

PRL 111 (2013) 012001

The total and (in)elastic cross sections

Luminosity dependent:

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \left. \frac{\text{d}N_{\text{el}}}{\text{d}t} \right|_0$$

Luminosity independent:

More on elastic scattering:

Measurement of the total cross section from elastic scattering in pp-collisions at $\sqrt{s}=8$ TeV with the ATLAS detector, <u>arXiv:1607.06605</u>

Measurement of Elastic pp Scattering at $\sqrt{s} = 8$ TeV in the Coulomb-Nuclear Interference Region – Determination of the ρ Parameter and the Total Cross-Section, <u>CERN-PH-EP-2015-325</u>

Evidence for Non-Exponential Elastic Proton-Proton Differential Cross-Section at Low |t| and $\sqrt{s} = 8$ TeV by TOTEM, Nucl. Phys. B 899 (2015) 527-546

See talk later today on "Total, elastic and inelastic pp cross sections at the LHC" by Tomas Sykora.

TOTEM:

EPL 96(2011) 21002 EPL 101(2013) 21002 EPL 101(2013) 21004 PRL 111 (2013) 012001

The inelastic cross section at 13 TeV

CMS Preliminary 13 TeV 100 O ATLAS EPOS LHC □ CMS 95 QGSJETII-04 **▲** PHOJET ▼ P6 Z2* 90 △ P8 Monash13 ♦ P8 DL P8 MBR 85 80 75 70 65 60 $\xi_{\rm v} > 10^{-7} \, {\rm or} \, \, \xi_{\rm v} > 10^{-6}$ $\xi > 10^{-6}$

<u>ATLAS STDM-2015-05</u> <u>arXiv:1606.02625</u>

See talk later today on "Total, elastic and inelastic pp cross sections at the LHC" by Tomas Sykora.

CMS FSQ-15-005

Higher detector acceptance by using CASTOR

The inelastic cross section at 13 TeV

Model-dependent extrapolations to ξ < 10⁻⁶ region

ATLAS STDM-2015-05 arXiv:1606.02625

See talk later today on "Total, elastic and inelastic pp cross sections at the LHC" by Tomas Sykora.

CMS FSQ-15-005

Higher detector acceptance by using CASTOR

Diffractive dissociation processes

Single-diffractive dissociation (SD):

Double-diffractive dissociation (DD):

Central-diffractive dissociation (CD):

Sketch of single-diffractive event:

LRG: Large Rapidity Gap

Diffractive dissociation corresponds to a considerable fraction of the pp inelastic cross section.

Soft diffraction in general model dependent.

Defining and constraining diffractive component important ingredient in the tuning of MC generators at the LHC.

Diffractive topologies at detector level

Look at highest/lowest η of particles reconstructed in detector (η_{max}/η_{min}) for forward gaps (SD/DD)

CG

Look at closest-to-zero positive/negative η of particles in detector $(\eta^0_{max}/\eta^0_{min})$ for central gaps (DD)

CMS FSQ-12-005
Phys. Rev. D 92 (2015) 012003

DD

Diffractive cross sections

CMS FSQ-12-005 Phys. Rev. D 92 (2015) 012003

1.5

2.5

 $log_{10}M_X$

Results compared to predictions from PYTHIA6, PYTHIA8 (Tune

$$\sigma_{\text{vis}}^{\text{DD}} = 4.00 \pm 0.04 \text{ (State.)} = -0.63 \text{ (Syst.)} \text{ mb}$$

$$(-5.5 < \log_{10} \xi_{X,Y} < -2.5)$$

$$\sigma_{\text{vis}}^{\text{DD}} = 2.69 \pm 0.04 \text{ (stat.)} + 0.29 \text{ (syst.)} \text{ mb}$$

$$(-5.5 < \log_{10} \xi_{X,Y} < -2.5 \text{ ; } 0.5 < \log_{10} M_{Y,X} < 1.1 \text{ ;}$$

$$\oplus \log_{10} M_X > 1.1 \text{ ; } \log_{10} M_Y > 1.1 \text{ ; } \Delta \eta > 3)$$

16.2 μb⁻¹ (7 TeV)

P8-MBR (ε=0.08) P8-MBR (ε=0.104)

 $\Delta \eta = -\ln \xi$

Diffractive cross sections

$$\sigma^{\text{SD}}(\xi < 0.05) = 8.84 \pm 0.08 \text{ (stat.)} ^{+1.49}_{-1.38} \text{ (syst.)} ^{+1.17}_{-0.37} \text{ (extrap.) mb}$$

$$\sigma^{\text{DD}}(\Delta \eta > 3) = 5.17 \pm 0.08 \text{ (stat.)} ^{+0.55}_{-0.57} \text{ (syst.)} ^{+1.62}_{-0.51} \text{ (extrap.) mb}$$

Extrapolated cross sections

CMS FSQ-12-005

Phys. Rev. D 92 (2015) 012003

Diffractive cross sections (TOTEM)

$$\sigma^{\rm SD} = 6.5 \pm 1.3 \text{ mb}$$
(3.4 GeV < $M_{\rm diff}$ < 1.1 TeV)

TOTEM Preliminary

Material taken from N. Minafra - Low-x 2016

Probing hard diffraction

Diffractive events where a hard scale is present: high-p_T jets, W/Z's, ...

HERA/Tevatron: Breaking of QCD factorization in hadron-hadron collisions.

Smaller cross sections than expected based on diffractive PDFs (dPDFs) convolved with partonic cross sections.

Soft interactions between spectator patrons from incoming protons quantified by "rapidity gap survival probability" (<S²>), roughly independent of the hard process.

dPDF parameterisation: Pomeron (and Reggeon) flux ⊗ pdf

section

proton PDF

Implemented in "hard-diffractive" MC's, e.g. POMPYT, POMWIG, FPMC; also PYTHIA8, HERWIG++ etc.

Partonic cross

Probing hard diffraction

Diffractive events where a hard scale is present: high-p_T jets, W/Z's, ...

HERA/Tevatron: Breaking of QCD factorization in hadron-hadron collisions.

Smaller cross sections than expected based on diffractive PDFs (dPDFs) convolved with partonic cross sections.

Soft interactions between spectator patrons from incoming protons quantified by "rapidity gap survival probability" (<S²>), roughly independent of the hard process.

 $\frac{d^2\sigma}{dx} = \sum_{i} \int dx_i$

$$f\left(\xi,t\right) = \frac{e^{Bt}}{\xi^{2\alpha_{I\!\!P}(t)-1}}$$

dPDF parameterisation: Pomeron (and Reggeon) flux ⊗ pdf

Pomeron (and Reggeon) flux \otimes part section $dx_1dx_2 f(\xi,t) f_{I\!\!P}(x_1,\mu) f_p(x_2,\mu) \hat{\sigma}$

proton PDF

Implemented in "hard-diffractive" MC's, e.g. POMPYT, POMWIG, FPMC; also PYTHIA8, HERWIG++ etc.

Partonic cross

Evidence of hard diffraction

Diffractive component is enhanced with respect to the non-diffractive (ND) in the low- ξ and high $\Delta\eta^F$ (size of forward gap) region.

Information from central ATLAS apparatus (sum over all particles in event).

High ND contribution in diffractive kinematic region.

 $\Delta \eta^{\mathsf{F}}$

Evidence of hard diffraction

Requiring forward gap ($\Delta \eta^F > 2$), excess is seen at low ξ .

MC-based extraction of gap survival probability.

$$S^2 = 0.16 \pm 0.04 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$$

Evidence of hard diffraction

Requiring forward gap ($\Delta \eta^F > 2$), excess is seen at low ξ .

MC-based extraction of gap survival probability.

$$S^2 = 0.16 \pm 0.04 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$$

$$S_{\rm data/MC}^2 = 0.12 \pm 0.05 \text{ (LO MC)}$$

 $S_{\rm data/MC}^2 = 0.08 \pm 0.04 \text{ (NLO MC)}$

Production of jets separated by a large rapidity gap

CMS FSQ-12-001

Events with two jets separated by a large rapidity gap.

Color-singlet exchange; sensitive to BFKL dynamics and rapidity gap survival probability.

HERWIG6: hard color-singlet exchange (LL Mueller-Tang model) + UE.

Production of jets separated by a large rapidity gap

CMS FSQ-12-001

Events with two jets separated by a large rapidity gap.

Color-singlet exchange; sensitive to BFKL dynamics and rapidity gap survival probability.

HERWIG6: hard color-singlet exchange (LL Mueller-Tang model) + UE.

Production of jets separated by a large rapidity gap

jet

Events with two jets separated by a large rapidity gap.

Color-singlet exchange; sensitive to BFKL dynamics and rapidity gap survival probability.

HERWIG6: hard color-singlet exchange (LL Mueller-Tang model) + UE.

Extraction of color-singlet exchange fraction from first two bins of N_{tracks} distribution.

Three lower-energy jet p_T bins. Increase of fraction with jet p_T .

Decrease with center-of-mass energy (comparison to Tevatron results).

Outline

Total, inelastic & diffractive cross section measurements at the LHC

Hard diffraction

High-β*/Low pile-up running with proton tagging

CT-PPS and AFP: proton spectrometers at highluminosity

Outlook: CMS & TOTEM extended forward detectors

July 2012: ($\beta^* = 90 \text{ m}, 8 \text{ TeV}$)

Common CMS-TOTEM data taking at low pile-up with around 50 nb⁻¹ collected.

October 2015: ($\beta^* = 90 \text{ m}$, 13 TeV)

~ 400 nb⁻¹ recorded (CMS/TOTEM) from around 700 nb⁻¹.

<N_{Int}/Bx> less than \sim 0.10.

TOTEM Roman Pots (RPs) to detect protons scattered from diffractive processes.

TOTEM T2 tracking stations at very forward angles

In 2012 Run also: Forward Shower Counters (FSC) covering lηl ~ 6-8.

Forward proton spectrometer associated with complete central coverage

ATLAS (ALFA) operational during high-β* running.

dN_{ch}/dη in central + forward regions

TOTEM T2

dN_{ch}/dη in central + forward regions

CMS FSQ-12-026
Eur. Phys. J. C 74 (2014) 3053

dN_{ch}/dη in central + forward regions

CMS FSQ-12-026

Eur. Phys. J. C 74 (2014) 3053

CMS FSQ-15-008

dN_{ch}/dη in central + forward regions

Example: central dijet event candidate with two leading protons (2012 Run)

TOTEM T2

 $\Sigma p_T(CMS) = 3.4 \text{ GeV}$

Track $p_T > 1 \text{ GeV}$

FSC empty in both sides

ECAL/HCAL E_T > 200 MeV

ICHEP2016 - Chicago - August 3-10 2016

Outlook: The CT-PPS Project

CERN-LHCC-2014-021

CMS-TOTEM
Precision Proton Spectrometer

Forward proton detectors

Forward proton detectors

→IP5

ATLAS: AFP (ATLAS Forward Proton)

Similar strategy concerning RPs and sensors.

First arm under commissioning (2016/2017).

Later installation of second arm and

time-of-flight detectors.

204m

Tracking detectors:

Measures the displacement of the scattered protons w.r.t. the beam

205 m

Scattered proton Ingoing protons Note: Not in scale!

Material taken from M. Trzebinski - LHC Forward Physics WG - March 2016

4 silicon tracker planes

4x4 L-Quartz bars

Forward proton detectors

ATLAS: AFP (ATLAS Forward Proton)

Similar strategy concerning RPs and sensors.

First arm under commissioning (2016/2017).

Later installation of second arm and

time-of-flight detectors.

CT-PPS status:

First phase of operation during 2016 using TOTEM silicon strip detectors.

Several fb⁻¹ of data already collected.

Diamond (high resolution time-of-flight) detectors installed in cylindrical RP and under comissioning.

Measures the displacement of the scattered protons w.r.t. the beam

Material taken from M. Trzebinski - LHC Forward Physics WG - March 2016

Near Station Roman Pot:

• 4x silicon tracker planes

Far Station Roman Pot:

• 4 silicon tracker planes

• 4x4 L-Quartz bars

Summary & Outlook

Detailed measurements of total and (in)elastic cross sections across LHC centre-of-mass energies.

Direct measurements of diffractive cross sections (fiducial and extrapolated).

Hard-diffractive processes observed at the LHC (CMS and ATLAS) from LRG method. Rapidity gap survival probability MC-based extraction.

Study of BFKL dynamics from observation of dijets with a large rapidity gap.

ATLAS RP system and common CMS-TOTEM data taking during special low pile-up and high-β* Runs at 8 and 13 TeV: studies of diffractive processes with full proton kinematics.

ATLAS AFP and CT-PPS will enhance the physics reach at the LHC.

Operation of Roman Pots at high luminosity. Timing detectors with high precision. Tracking detectors with 3D pixel sensors.

Sensitivity to anomalous gauge couplings and search for new resonances.

CT-PPS TECHNICAL DESIGN REPORT

CERN-LHCC-2014-021

Extra slides

dN/dη of charged hadrons at 13 TeV

Charged hadron pseudorapidity density in inelastic pp collisions at 13 TeV;

Central value: 5.49 ± 0.01 (stat.) ± 0.17 (syst.);

First LHC paper at 13 TeV.

CMS FSQ-15-001

Phys. Lett. B 751 (2015) 143

LISHEP 2015 - A. Vilela Pereira

Diffractive cross sections

CMS FSQ-12-005

Phys. Rev. D 92 (2015) 012003

Forward pseudorapidity gap cross section

Forward pseudorapidity gap cross section from backward/forward edge of detector (up to HF only).

Hadron level definition directly related to that at detector level.

Diffractive dijet candidate

Dijet production

Distributions are obtained as a function of ξ^+ and ξ^- , and averaged

A combination of PYTHIA6 (Tune Z2) and POMPYT is used to describe the data, where their relative contributions are obtained from a fit to the ξ distribution

Note that different MC tunes would imply considerable variations in relative yields

Suppression of events with high ξ values after $\eta_{max} < 3$ (or $\eta_{min} > -3$) selection, while low- ξ region is mostly unaffected

Results in three ξ bins: (0.0003,0.002); (0.002,0.0045); (0.0045,0.01)

Dijet cross section

$$\frac{d\sigma_{\rm jj}}{d\tilde{\xi}} = \frac{N_{\rm jj}^i}{L \cdot \epsilon \cdot A^i \cdot \Delta \tilde{\xi}^i}$$

$$A_{\mathrm{MC}}^{i} = \frac{N^{i}(\tilde{\xi}_{\mathrm{Rec}})}{N^{i}(\tilde{\xi}_{\mathrm{Gen}})}$$

Excess of events in low-ξ region with respect to non-diffractive MC's PYTHIA6 and PYTHIA8

POMPYT and POMWIG (LO) diffractive MC's as well as the NLO calculation from POWHEG, using diffractive PDFs, are a factor \sim 5 above the data in lowest ξ bin

PYTHIA8 diffractive cross sections are considerably lower due to different pomeron flux parametrisation

Normalisation discrepancies can be interpreted as estimates (after subtracting proton dissociation) of rapidity gap survival probability:

$$S_{\text{data/MC}}^{2 \, (*)} = 0.12 \pm 0.05 \text{ (LO MC)}$$

 $S_{\text{data/MC}}^{2 \, (*)} = 0.08 \pm 0.04 \text{ (NLO MC)}$

(*) MC based subtraction of proton dissociation

W→ev(µv) events with a gap

Forward gap selection in HF (3 < $|\eta|$ < 4.9)

Signed η_{lepton} distribution (η_{lepton} < 0 when e,µ opposite to the pseudorapidity gap)

Flat for non-diffractive, asymmetric for diffractive events

Evidence of diffractive W production in the data Fit for PYTHIA (ND) + POMPYT (SD):

$$f_{\rm SD} = 50.0 \pm 9.3 ({\rm stat.}) \pm 5.2 ({\rm syst.}) \%$$
 (η-gap sample)

Vormalised

"Central Exclusive" production

Exclusive channel through exchange of color singlet, lowest order given by gluon-gluon fusion, plus *screening* low-Q² gluon

Protons remain intact as in QED process, or dissociate in a low mass system, and are separated from the central system ($\gamma\gamma$, H, etc.) by rapidity gaps

Main theoretical uncertainties common among different final states. Higher cross section channels, such as $\gamma\gamma$ or dijets, can test predictions for central exclusive production of new states.

CMS-TOTEM central dijet events

CMS-TOTEM detectors

Recorded data (2015 high-β*)

CMS overall recorded ~ 0.7 pb⁻¹ TOTEM overall recorded ~ 0.4 pb⁻¹ <N_{Int}/Bx> less than ~ 0.10

2015.10.17 06:47:50 to 2015.10.17 16:01:13 GMT

Time

ATLAS (ALFA) operational during high-β* running.

Detector acceptance vs β*

CMS + TOTEM triggers: Summary

In CMS: RP + T2 veto (L1) + Track (HLT)

CMS HLT up to ~ 10 kHz

CMS-TOTEM common data taking

Data streaming / Reconstruction / "N-tuples"

CMS Readout Offline data synchronization

HLT "Pass through"

LIA

TOTEM

Roman Pot Minimum-bias Zero-Bias

CMS LI

LI Technical Triggers

LI Algorithm
Triggers (Jets,
Muons)

Data streaming /
Reconstruction /
"N-tuples"

LIA

TOTEM Readout

Subset of L1 triggers

CMS-TOTEM common data taking: Low mass states + 2 protons

CMS Readout "L1 TOTEM 0"

TOTEM collects all RP triggered events

CMS selects only subset after HLT

Event synchronization offline

TOTEM Rate ~ 45 kHz

CMS Rate ~ 1.5 - 2 kHz

CMS HLT HLT Pixel Clusters

TOTEM 0

CMS LI

Physics performance: Central Exclusive Production

Central Exclusive Production as main Physics motivation:

- i) photon-photon fusion
- ii) gluon-gluon fusion in colour-singlet, JPC = 0++, state

High-p_T system X detected by the CMS detectors at central pseudorapidity with high-energy, very low angle scattered protons detected by CT-PPS;

The two outgoing protons must balance perfectly the system X momentum, hence creating strong kinematical constraints;

Its mass M_X is obtained from the momentum loss of the two protons, allowing to study invisible final states with difficult reconstruction in CMS;

The Physics potential includes the study of gauge boson production by photon-photon fusion and anomalous yyWW, yyZZ and yyyy couplings, search for new BSM resonances and the study of QCD in a new domain.

Full simulation studies carried out for two benchmark channels: Exclusive WW production and Exclusive dijet production.

Anomalous quartic couplings

Effective Lagrangian with quartic anomalous operators χχWW and χχZZ:

$$\mathcal{L}_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

$$violating unitarity at heavy and the energies: a constant of the energies of the energies: a constant of the energies of the energies: a constant of the energies of t$$

Ansatz coupling form factors introduced to avoid violating unitarity at high energies:

$$a o \frac{a}{(1 + W_{\gamma\gamma}^2/\Lambda^2)^n}$$

E. Chapon, C. Royon, O. Kepka (2009)