Diffractive cross sections and hard diffraction at the LHC

A. Vilela Pereira on behalf of the ATLAS, CMS and TOTEM Collaborations Universidade do Estado do Rio de Janeiro

hitp://atlas.ch

Outline

Total, inelastic \& diffractive cross section measurements at the LHC

Hard diffraction
High $-\beta^{\star} /$ Low pile-up running with proton tagging
CT-PPS and AFP: proton spectrometers at highluminosity

ATLAS, CMS \& TOTEM @ LHC

Large Hadron Collider
 27 km circumference

ATLAS, CMS \& TOTEM @ LHC

Large Hadron Collider
 27 km circumference

The ATLAS detector

ATLAS - ALFA

Roman Pot (RP) (vertical) stations at ~ 240 m from ATLAS IP.

8 fiber detectors (2 x 10 layers; 0.5 mm fibers; resolution $\sim 35 \mathrm{um}$).

Fully integrated in ATLAS DAQ.

Material taken from P.Fassnacht Forward Physics Working Group workshop - March 2016

The CMS detector

The CMS detector

CMS Detector

Pixels
Tracker ECAL HCAL
Solenoid Steel Yoke Muons

STEEL RETURN YOKE
~13000 tonnes

ZERO-DEGREE

CALORIMETER

Total weight Overall diameter Overall length Magnetic field
: 14000 tonnes
: 15.0 m
: 28.7 m
HADRON CALORIMETER (HCAL)
Brass + plastic scintillator

SILICON TRACKER

Pixels (100 x $\left.150 \mu \mathrm{~m}^{2}\right)$
$\sim 1 \mathrm{~m}^{2} 66 \mathrm{M}$ channels
Microstrips ($50-100 \mathrm{um}$)

Forward detectors @ CMS

Detector configuration during 2010-201I

Hadronic Forward (HF)
$\frac{140 \mathrm{~m}}{\substack{\text { ZDC } \\(|\eta|>8.1)}}$

$$
140 \mathrm{~m}
$$

CMS Detector

CMS

Hadronic Forward (HF)

$$
(3.0<|\eta|<5.0)
$$

Forward detectors @ CMS

Detector configuration

 during 2010-2011Hadroni Forward (

ZDC
($|\eta|>8.1$)
140 m

ATLAS
http://atlas.ch
LAr hadronic end-cap (HEC)

LAr electromagnetic end-cap (EMEC)

Analogous forward detector instrumentation, at large pseudorapidity, present as well in ATLAS, in particular: Forward Calorimeter (FCal): Liquid argon sampling calorimeter (3.1<| $\mid<4.9$).
Minimum-bias trigger scintillators (MBTS):
In front of each endcap calorimeter. Inner and outer octagonal rings w/ 8 and 4 counters respectively ($2.07<|\eta|<3.86$). LUCID: Forward Cherenkov detector ($5.6<|n|<5.9$).

The TOTEM detectors

T1: $3.1<|\eta|<4.7$
T2: $5.3<|\eta|<6.5$
Detect charged particles from collision.

Vertical RPs

Horizontal RPs

Cylindrical RPs (w/ CT-PPS)

Roman Pots (RPs)
Detect outgoing protons at very small angles (elastic, diffractive and photon-induced processes).

Material taken from N . Minafra - Low-x 2016

Outline

Total, inelastic \& diffractive cross section measurements at the LHC

Hard diffraction

ATLAS STDM-2015-22
arXiv:1607.06605

The total and (in)elastic cross sections

Luminosity dependent:
$\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi}{1+Q^{2}} \frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{d} t}\right|_{0}$

Luminosity independent:
$\sigma_{\text {tot }}=\frac{16 \pi}{1+\varrho^{2}} \frac{\mathrm{~d} N_{\mathrm{el}} /\left.\mathrm{d} t\right|_{0}}{N_{\mathrm{el}}+N_{\text {inel }}}$
ρ-independent:

$$
\sigma_{\text {tot }}=\frac{1}{\mathcal{L}}\left(N_{\mathrm{el}}+N_{\mathrm{inel}}\right)
$$

TOTEM:
EPL 96(2011) 21002
EPL 101(2013) 21002
EPL 101(2013) 21004
PRL 111 (2013) 012001

TOTEM

The total and (in)elastic cross sections

Luminosity dependent:
$\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{d} t}\right|_{0}$

Luminosity independent:

More on elastic scattering:
Measurement of the total cross section from elastic scattering in pp-collisions at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ with the ATLAS detector, arXiv:1607.06605
Measurement of Elastic pp Scattering at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ in the Coulomb-Nuclear Interference Region Determination of the ρ Parameter and the Total Cross-Section, CERN-PH-EP-2015-325
Evidence for Non-Exponential Elastic Proton-Proton Differential Cross-Section at Low $|\mathrm{t}|$ and $\sqrt{ } \mathrm{s}=8$ TeV by TOTEM, Nucl. Phys. B 899 (2015) 527-546
$10 \quad 10^{2} \quad 10^{3} \quad 10^{4} \sqrt{s}[\mathrm{GeV}]$

TOTEM:
EPL 96(2011) 21002
EPL 101(2013) 21002
EPL 101(2013) 21004
PRL 111 (2013) 012001

TOTEM
 The total and (in)elastic cross sections

Luminosity dependent:

$$
\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{~d} t}\right|_{0}
$$

Luminosity independent:

More on elastic scattering:
Measurement of the total cross section from elastic scattering in pp-collisions at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ with the ATLAS detector, arXiv: 1607.06605
Measurement of Elastic pp Scattering at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ in the Coulomb-Nuclear Interference Region Determination of the ρ Parameter and the Total Cross-Section, CERN-PH-EP-2015-325
Evidence for Non-Exponential Elastic Proton-Proton Differential Cross-Section at Low $|\mathrm{t}|$ and $\sqrt{ } \mathrm{s}=8$ TeV by TOTEM, Nucl. Phys. B 899 (2015) 527-546

See talk later today on "Total, elastic and inelastic pp cross sections at the LHC" by Tomas Sykora.

TOTEM:
EPL 96(2011) 21002
EPL 101(2013) 21002
EPL 101(2013) 21004
$\underline{\text { PRL } 111 \text { (2013) } 012001}$

The inelastic cross section at 13 TeV

Preliminary ATLAS result (instead of that from arXiv:1606.02625)

ATLAS STDM-2015-05

arXiv:1606.02625

See talk later today on "Total, elastic and inelastic pp cross sections at the LHC" by Tomas Sykora.

(\#) The inelastic cross section at 13 TeV

Preliminary ATLAS result (instead of
Model-dependent extrapolations to $\xi<10^{-6}$ region that from arXiv:1606.02625)

ATLAS STDM-2015-05

arXiv:1606.02625

See talk later today on "Total, elastic and inelastic pp cross sections at the LHC" by Tomas Sykora.

CMS FSQ-15-005

Diffractive dissociation processes

> Single-diffractive dissociation (SD):

$t=\left(p-p^{\prime}\right)^{2} ; \xi=(M x)^{2} / \mathrm{s}$
Sketch of single-diffractive event:

LRG: Large Rapidity Gap

Double-diffractive dissociation (DD):

Diffractive dissociation corresponds to a considerable fraction of the pp inelastic cross section.

Soft diffraction in general model dependent.

Defining and constraining diffractive component important ingredient in the tuning of MC generators at the LHC.

Diffractive topologies at detector level

| Detector
 level | a) | $\eta_{\min }$ | $\eta_{\max }$ |
| :---: | :--- | :--- | :--- | | Generator |
| :---: |
| level |

Diffractive cross sections

Results compared to predictions from PYTHIA6, PYTHIA8 (Tune 4C), PYTHIA8-MBR (+ other models)

$$
\begin{aligned}
\sigma_{\text {vis }}^{\mathrm{SD}}=4.06 \pm 0.04(\text { stat. }) & { }_{-0.63}^{+0.69}(\text { syst. }) \mathrm{mb} \\
& \left(-5.5<\log _{10} \xi_{X, Y}<-2.5\right)
\end{aligned}
$$

$$
\sigma_{\text {vis }}^{\mathrm{DD}}=2.69 \pm 0.04 \text { (stat.) }{ }_{-0.30}^{+0.29} \text { (syst.) mb }
$$

$$
\left(-5.5<\log _{10} \xi_{X, Y}<-2.5 ; 0.5<\log _{10} M_{Y, X}<1.1\right.
$$

$$
\left.\oplus \log _{10} M_{X}>1.1 ; \log _{10} M_{Y}>1.1 ; \Delta \eta>3\right)
$$

$$
\begin{aligned}
\sigma^{\mathrm{SD}}(\xi<0.05) & =8.84 \pm 0.08 \text { (stat.) }{ }_{-1.38}^{+1.49} \text { (syst.) }{ }_{-0.37}^{+1.17} \text { (extrap.) mb } \\
\sigma^{\mathrm{DD}}(\Delta \eta>3) & =5.17 \pm 0.08 \text { (stat.) }{ }_{-0.57}^{+0.55} \text { (syst.) }{ }_{-0.51}^{+1.62} \text { (extrap.) mb }
\end{aligned}
$$

Extrapolated cross sections

CMS FSQ-12-005

Phys. Rev.D 92 (2015) 012003

霎

Diffractive cross sections (TOTEM)

Material taken from N . Minafra - Low-x 2016

Probing hard diffraction

Diffractive events where a hard scale is present: high-pt jets, W/Z's, ...

HERA/Tevatron: Breaking of QCD factorization in hadron-hadron collisions.

Smaller cross sections than expected based on diffractive PDFs (dPDFs) convolved with partonic cross sections.

Soft interactions between spectator patrons from incoming protons quantified by "rapidity gap survival probability" (<S²>), roughly independent of the hard process.

dPDF parameterisation:
Pomeron (and Reggeon) flux \otimes pdf
Partonic cross section

Probing hard diffraction

Diffractive events where a hard scale is present: high-pt jets, W/Z's, ...
HERA/Tevatron: Breaking of QCD factorization in hadron-hadron collisions.

Smaller cross sections than expected based on diffractive PDFs (dPDFs) convolved with partonic cross sections.

Soft interactions between spectator patrons from incoming protons quantified by "rapidity gap survival probability" (<S²>), roughly independent of the hard process.

dPDF parameterisation:
Pomeron (and Reggeon) flux \otimes pdf

Partonic cross section

Evidence of hard diffraction

Diffractive component is enhanced with respect to the non-diffractive (ND) in the low- ξ and high $\Delta \eta^{F}$ (size of forward gap) region. Information from central ATLAS apparatus (sum over all particles in event).

High ND contribution in diffractive kinematic region.

Evidence of hard diffraction

Requiring forward gap ($\Delta \eta^{F}>2$), excess is seen at low ξ.

MC-based extraction of gap survival probability.

$$
S^{2}=0.16 \pm 0.04 \text { (stat.) } \pm 0.08 \text { (syst.) }
$$

Evidence of hard diffraction

Requiring forward gap ($\Delta \eta^{F}>2$), excess is seen at low ξ.

MC-based extraction of gap survival probability.

$$
S^{2}=0.16 \pm 0.04 \text { (stat.) } \pm 0.08 \text { (syst.) }
$$

Phys. Rev.D 87 (2013) 012006

$$
\begin{aligned}
& S_{\text {data } / \mathrm{MC}}^{2}=0.12 \pm 0.05(\mathrm{LO} \mathrm{MC}) \\
& S_{\text {data } / \mathrm{MC}}^{2}=0.08 \pm 0.04(\mathrm{NLO} \mathrm{MC})
\end{aligned}
$$

Production of jets separated by a large rapidity gap

Events with two jets separated by a large rapidity gap.
Color-singlet exchange; sensitive to BFKL dynamics and rapidity gap survival probability.

HERWIG6: hard color-singlet exchange (LL Mueller-Tang model) + UE.

$8 \mathrm{pb}^{-1}(7 \mathrm{TeV})$

Production of jets separated by a large rapidity gap

Events with two jets separated by a large rapidity gap.

Color-singlet exchange; sensitive to BFKL dynamics and rapidity gap survival probability.

HERWIG6: hard color-singlet exchange (LL Mueller-Tang model) + UE.

Production of jets separated by a large rapidity gap

Events with two jets separated by a large rapidity gap.

Color-singlet exchange; sensitive to BFKL dynamics and rapidity gap survival probability.

HERWIG6: hard color-singlet exchange (LL Mueller-Tang model) + UE.

Extraction of color-singlet exchange fraction from first two bins of $\mathrm{N}_{\text {tracks }}$ distribution.
Three lower-energy jet p_{T} bins. Increase of fraction with jet $p_{\text {т }}$.
Decrease with center-of-mass energy (comparison to Tevatron results).

High $-\beta^{*} /$ Low pile-up running with proton tagging CT-PPS and AFP: proton spectrometers at highluminosity

TOTEM
 Outlook: CMS \& TOTEM extended forward detectors

July 2012: ($\beta^{*}=90 \mathrm{~m}, 8 \mathrm{TeV}$)
Common CMS-TOTEM data taking at low pile-up with around $50 \mathrm{nb}^{-1}$ collected.

October 2015: ($\left.\beta^{*}=90 \mathrm{~m}, 13 \mathrm{TeV}\right)$
~ $400 \mathrm{nb}^{-1}$ recorded (CMS/TOTEM) from around $700 \mathrm{nb}^{-1}$.
$<N_{\text {lnt }} / B x>$ less than ~ 0.10.
TOTEM Roman Pots (RPs) to detect protons scattered from diffractive processes.

TOTEM T2 tracking stations at very forward angles

In 2012 Run also: Forward Shower Counters (FSC) covering $|\eta|$ ~ 6-8.

ATLAS (ALFA) operational during high- β^{*} running.

$\frac{8}{6}$

$\mathrm{d} \mathrm{N}_{\mathrm{ch}} / \mathrm{dn}$ in central + forward regions

CMS FSQ-12-026

Eur. Phys.J.C 74 (2014) 3053

$\frac{\square}{\sqrt{15}}$

$\mathrm{dN} \mathrm{N}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta}$ in central + forward regions

CMS FSQ-15-001
Phys. Lett. B 751 (2015) 143

CMS FSQ-12-026

Eur. Phys. J. C 74 (2014) 3053

署

$\mathrm{d} \mathrm{N}_{\mathrm{ch}} / \mathrm{dn}$ in central + forward regions

CMS FSQ-12-026
Eur. Phys. J. C 74 (2014) 3053

CMS FSQ-15-008

霊
 $\mathrm{dN} \mathrm{N}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta}$ in central + forward regions

(13 TeV)

\circledast Example: central dijet event candidate with two leading protons (2012 Run)

TOTEM Roman Pot stations - Sector 4-5

Leading three jets $\mathrm{E}_{\mathrm{T}}=65,45,27 \mathrm{GeV}$ proton $\Delta \mathrm{p} / \mathrm{p}=-0.01(\mathrm{z}+)$
proton $\Delta \mathrm{p} / \mathrm{p}=-0.1(\mathrm{z}-)$
$\mathrm{M}(\mathrm{pp}$, TOTEM $)=244 \mathrm{GeV}$
$\mathrm{M}(\mathrm{CMS})=219 \mathrm{GeV}$
$\Sigma \mathrm{p}_{\mathrm{T}}(\mathrm{CMS})=3.4 \mathrm{GeV}$
FSC empty in both sides
ECAL/HCAL E $\mathrm{E}_{\mathrm{T}}>200 \mathrm{MeV}$ Track $\mathrm{p}_{\mathrm{T}}>1 \mathrm{GeV}$

Forward proton detectors

Forward proton detectors

ATLAS: AFP (ATLAS Forward Proton) Similar strategy concerning RPs and sensors.

First arm under commissioning (2016/2017).
Later installation of second arm and time-of-flight detectors.

ATLAS: AFP (ATLAS Forward Proton) Similar strategy concerning RPs and sensors.

First arm under commissioning (2016/2017).
Later installation of second arm and time-of-flight detectors.

CT-PPS status:

First phase of operation during 2016 using TOTEM silicon strip detectors.
Several fb^{-1} of data already collected.
Diamond (high resolution time-of-flight) detectors installed in cylindrical RP and under comissioning.

Measures the displacement of the
scattered protons w.r.t. the beam

Detailed measurements of total and (in)elastic cross sections across LHC centre-of-mass energies.
Direct measurements of diffractive cross sections (fiducial and extrapolated).
Hard-diffractive processes observed at the LHC (CMS and ATLAS) from LRG method. Rapidity gap survival probability MC-based extraction.

Study of BFKL dynamics from observation of dijets with a large rapidity gap.
ATLAS RP system and common CMS-TOTEM data taking during special low pile-up and high- β^{*} Runs at 8 and 13 TeV : studies of diffractive processes with full proton kinematics.

ATLAS AFP and CT-PPS will enhance the physics reach at the LHC.
Operation of Roman Pots at high luminosity. Timing detectors with high precision. Tracking detectors with 3D pixel sensors.

Sensitivity to anomalous gauge couplings and search for new resonances.

Extra slides

$d N / d \eta$ of charged hadrons at 13 TeV

Charged hadron pseudorapidity density in inelastic pp collisions at 13 TeV ; Central value: 5.49 ± 0.01 (stat.) ± 0.17 (syst.);
First LHC paper at 13 TeV .

CMS FSQ-15-001
Phys. Lett. B 751 (2015) 143

Diffractive cross sections

Forward pseudorapidity gap cross section

Forward pseudorapidity gap cross section from backward/forward edge of detector (up to HF only). Hadron level definition directly related to that at detector level.

Diffractive dijet candidate

Dijet production

Distributions are obtained as a function of ξ^{+}and ξ, and averaged

A combination of PYTHIA6 (Tune Z2) and POMPYT is used to describe the data, where their relative contributions are obtained from a fit to the ξ distribution

Note that different MC tunes would imply considerable variations in relative yields

Suppression of events with high ξ values after $\eta_{\text {max }}<3$ (or $\eta_{\text {min }}>-3$) selection, while low- ξ region is mostly unaffected

Results in three ξ bins: $(0.0003,0.002)$; (0.002,0.0045); (0.0045,0.0I)

Dijet cross section

$$
\frac{d \sigma_{\mathrm{jj}}}{d \tilde{\xi}}=\frac{N_{\mathrm{jj}}^{i}}{L \cdot \epsilon \cdot A^{i} \cdot \Delta \tilde{\xi}^{i}}
$$

$$
A_{\mathrm{MC}}^{i}=\frac{N^{i}\left(\tilde{\xi}_{\text {Rec }}\right)}{N^{i}\left(\tilde{\xi}_{\text {Gen }}\right)}
$$

Excess of events in low- ξ region with respect to non-diffractive MC's PYTHIA6 and PYTHIA8

POMPYT and POMWIG (LO) diffractive MC's as well as the NLO calculation from POWHEG, using diffractive PDFs, are a factor ~ 5 above the data in lowest ξ bin

PYTHIA8 diffractive cross sections are considerably lower due to different pomeron flux parametrisation

Normalisation discrepancies can be interpreted as estimates (after subtracting proton dissociation) of rapidity gap survival probability:

$$
\begin{aligned}
& S_{\text {data } / \mathrm{MC}}^{2(*)}=0.12 \pm 0.05(\mathrm{LO} \mathrm{MC}) \\
& S_{\text {data } / \mathrm{MC}}^{2\left({ }^{(*)}\right.}=0.08 \pm 0.04(\mathrm{NLO} \mathrm{MC})
\end{aligned}
$$

(*) MC based subtraction of proton dissociation

$W \rightarrow e v(\mu v)$ events with a gap

Forward gap selection in HF $(3<|\eta|<4.9)$ Signed $\eta_{\text {lepton }}$ distribution ($\eta_{\text {lepton }}<0$ when e, μ opposite to the pseudorapidity gap)
 events

Flat for non-diffractive, asymmetric for diffractive
Evidence of diffractive W production in the data
Fit for PYTHIA (ND) + POMPYT (SD):
$f_{\mathrm{SD}}=50.0 \pm 9.3$ (stat.) ± 5.2 (syst.) $\%$
(η-gap sample)

"Central Exclusive" production

Exclusive channel through exchange of color singlet, lowest order given by gluongluon fusion, plus screening low-Q2 gluon

Protons remain intact as in QED process, or dissociate in a low mass system, and are separated from the central system ($\gamma \mathrm{\gamma}, \mathrm{H}$, etc.) by rapidity gaps

Main theoretical uncertainties common among different final states. Higher cross section channels, such as $\mathrm{\gamma} \mathrm{\gamma}$ or dijets, can test predictions for central exclusive production of new states.

CMS-TOTEM central dijet events

Forward Shower
Counters

59-114m

P

TOTEM
Roman Pots

Forward Shower Counters

TOTEM TV

TOTEM TR

CMS-TOTEM detectors

Day 2
16/10/2015

| $\mathrm{E}+14$ -
3E+13- Day 3
17/10/2015

$14: 00$

-

E+13- Fill 450
ill 4509

Recorded data (2015 high- β^{\star})

 CMS overall recorded $\sim 0.7 \mathrm{pb}^{-1}$CMS: Fill 4509 Luminosity TOTEM overall recorded $\sim 0.4 \mathrm{pb}^{-1}$ $<\mathrm{N}_{\mathrm{nt}} / \mathrm{Bx}>$ less than ~ 0.10

ATLAS (ALFA) operational during high- β^{*}

Detector acceptance vs β^{\star}

$\beta^{*}=0.55 \mathrm{~m}\left(\right.$ low $\beta^{*}=$ standard at LHC $)$

$\beta^{*}=90 \mathrm{~m}$ (special development for RP runs)

$|t|\left(\mathrm{GeV}^{2}\right)$ $\mathcal{L} \propto \frac{1}{\beta^{*}}$

CMS + TOTEM triggers: Summary In CMS: RP + T2 veto (L1) + Track (HLT)

CMS HLT up to $\sim 10 \mathrm{kHz}$

CMS-TOTEM common data taking

Data streaming /
Reconstruction /
"N-tuples"

CMS Readout

Offline data synchronization

CMS-TOTEM common data taking: Low mass states +2 protons

"L1 TOTEM 0"
TOTEM collects all RP triggered events
CMS selects only subset after HLT
Event synchronization offline
TOTEM Rate $\sim 45 \mathrm{kHz}$
CMS Rate~1.5-2 kHz

CMS LI

Physics performance: Central Exclusive Production

Central Exclusive Production as main Physics motivation:
i) photon-photon fusion
ii) gluon-gluon fusion in colour-singlet, $\mathrm{JPC}^{\mathrm{PC}}=0^{++}$, state

High- p_{T} system X detected by the CMS detectors at central pseudorapidity with high-energy, very low angle scattered protons detected by CT-PPS;
The two outgoing protons must balance perfectly the system X momentum, hence creating strong kinematical constraints;
Its mass Mx_{x} is obtained from the momentum loss of the two protons, allowing to study invisible final states with difficult reconstruction in CMS;
The Physics potential includes the study of gauge boson production by photon-photon fusion and anomalous $\gamma \gamma W \mathrm{WW}$, ४૪ZZ and $૪ ૪ ૪ ૪$ couplings, search for new BSM resonances and the study of QCD in a new domain.

Full simulation studies carried out for two benchmark channels: Exclusive WW production and Exclusive dijet production.

CMS-TOTEM

CMS-TOTEM
PRECISION PROTON SPECTROMETER

Anomalous quartic couplings

Effective Lagrangian with quartic anomalous operators $\gamma \gamma W W$ and $\gamma \gamma Z Z$:

$$
\begin{aligned}
\mathcal{L}_{6}^{0} & =\frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu \nu} F^{\mu \nu} W^{+\alpha} W_{\alpha}^{-}-\frac{e^{2}}{16 \cos ^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu \nu} F^{\mu \nu} Z^{\alpha} Z_{\alpha} \\
\mathcal{L}_{6}^{C} & =\frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu \alpha} F^{\mu \beta}\left(W^{+\alpha} W_{\beta}^{-}+W^{-\alpha} W_{\beta}^{+}\right)-\frac{e^{2}}{16 \cos ^{2} \theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu \alpha} F^{\mu \beta} Z^{\alpha} Z_{\beta}
\end{aligned}
$$

Ansatz coupling form factors introduced to avoid violating unitarity at high energies:
$a \rightarrow \frac{a}{\left(1+W_{\gamma \gamma}^{2} / \Lambda^{2}\right)^{n}}$

E. Chapon, C. Royon, O. Kepka (2009)

