Quarkonium and open heavy-flavor production in Pb-Pb and p-Pb collisions with ALICE at the LHC

Ionut Arsene
on behalf of the ALICE Collaboration

UiO: University of Oslo

Outline

- Introduction
- ALICE detector
- Nuclear modification and elliptic flow in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV
- New quarkonia results at 5.02 TeV
- Open and hidden heavy-flavor production in p-Pb collisions
- Conclusions

Heavy quarks and heavy-ion collisions

Heavy quarks and heavy-ion collisions

Quarkonia

- Color screening (Matsui and Satz 1986)
 - Sequential suppression (Digal, Petreczcy, Satz 2001)

- Copious heavy-quark production at LHC
 - ~100 cc and 5-6 bb in central Pb-Pb collisions
- Charmonium creation at the phase boundary (Braun-Munzinger, Stachel 2000)
- Continuous melting and regeneration (Thews et al. 2001)

Open heavy flavours and quarkonia in ALICE

D meson suppression in AA collisions

ALICE, JHEP1603 (2016) 081

- Strong suppression of D-meson yields in the most central Pb-Pb collisions at mid-rapidity
- Results by STAR at $\sqrt{s_{NN}}$ =200 GeV indicate that R_{AA} >1 at low p_T
 - Expected from charm conservation

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \times \frac{Y_{AA}}{Y_{pp}} = \frac{medium}{vacuum}$$

D-meson suppression in Pb-Pb collisions

ALICE, JHEP1603 (2016) 081

- Strong final-state interactions of the charm quarks with the medium suggested by model calculations
- Main mechanism at play: energy loss via collisional and radiative processes
- A pQCD calculation implementing only shadowing indicates mild CNM effects

Heavy-quark energy loss

ALICE, JHEP11 (2015) 205

- Energy loss (ΔE) in the medium depends on
 - medium properties (e.g. density, temperature)
 - path length
- Suppression grows from peripheral to central Pb-Pb collisions

Heavy quark energy loss

ALICE, JHEP1603 (2016) 081

- Energy loss (ΔE) in the medium depends on
 - medium properties (e.g. density, temperature)
 - path length
 - parton type (via mass, Casimir factor)
 - b-quarks clearly less suppressed than c-quarks
 - \rightarrow consistent with the expectation $\Delta E_c > \Delta E_b$

Inclusive J/ψ suppression in Pb-Pb collisions at 5.02 TeV

• Similar suppression levels at both 5.02 and 2.76 TeV with nearly no centrality dependence for $N_{\rm part}$ >100

Inclusive J/ψ suppression in Pb-Pb collisions at 5.02 TeV

- Hint of an increase of $R_{_{\mathrm{AA}}}$ with energy in central collisions
- Good agreement between data and models which include J/ψ regeneration

Inclusive J/ ψ as a function of p_{\perp}

• Similar decreasing trend with increasing $p_{_{\rm T}}$ at both 2.76 and 5.02 TeV

6

8

 $10_{p_{\tau} (\text{GeV/c})} 12$

• Hint for an increase of $R_{_{\rm AA}}$ with beam energy for $p_{_{\rm T}} > 2~{\rm GeV}/c$

ALI-PUB-109787

Y(1S) suppression in Pb-Pb collisions at 5.02 TeV

- Bottomonium is much less affected by regeneration effects → cleaner probe for the medium properties
- A strong Y(1S) suppression is observed in central collisions at both 2.76 and 5.02 TeV

Y(1S) suppression in Pb-Pb collisions at 5.02 TeV

- Bottomonium is much less affected by regeneration effects → cleaner probe for the medium properties
- The suppression trend is well described by transport model calculations with (Emerick et al.) or without (Zhou et al.) regeneration

Elliptic flow (v_2)

 Determined by the initial spatial eccentricity, with energy density as weight ...the strongly coupled system

...the strongly coupled system transforms it into momentum anisotropy

 $\frac{dN}{d\varphi} \sim [1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + \dots]$

 ϕ - azimuthal angle w.r.t. reaction plane

 Do heavy flavors thermalize and consequently flow like the light flavored particles?

Elliptic flow of heavy-flavors

ALICE, arXiv: 1606.00321

ALICE, PRL111 (2013) 162301

- Significant non-zero elliptic flow observed for D mesons
- The intermediate- $p_{_{\rm T}}$ J/ ψ hints non-zero $v_{_{2}}$ in semi-central collisions
- Reproducing both v_2 and $R_{\Delta\Delta}$ is a challenge for models

Heavy-flavor production in p-Pb collisions

- Reference for Pb-Pb results: understand the role of Cold Nuclear Matter (CNM) effects using a system where the formation of a QGP is not expected
 - Nuclear modifications of the PDFs, i.e. shadowing, Color Glass Condensate
 - Partonic coherent energy loss
 - Parton- k_{T} broadening
 - Nuclear absorption
- Check for the presence of non-CNM effects:
 - Collective behaviour ?
 - Formation of a QGP droplet ?

D-meson suppression in p-Pb collisions

ALICE, arXiv: 1605.07569

- $R_{\text{pPb}}(p_{\text{T}}>0, -0.96 < y_{\text{cms}} < 0.04) = 0.89 \pm 0.11(\text{stat.})^{+0.13}_{-0.18}(\text{syst.})$
- Measurement compatible with no CNM effects
- Experimental uncertainties are still too large to distinguish between existing models

Heavy-flavor lepton suppression in p-Pb collision

- Heavy-flavor leptons show no suppression at forward and mid-rapidity
- Indication of an enhancement at backward rapidity for $2 < p_{\tau} < 4$ GeV/c
- Data consistent with models which include cold nuclear matter effects

Quarkonia in p-Pb collisions at 5.02 TeV

ALICE, JHEP02 (2014) 073 JHEP06 (2015) 055

PLB740 (2015) 105

- J/ψ and Y(1S) are suppressed at forward rapidity
- At backward rapidity both states are compatible with no suppression
- Data are consistent with expectations from energy loss models (+shadowing)

Conclusions

Open heavy flavors

- Strong modification of the charm and beauty kinematics in Pb-Pb collisions w.r.t. pp collisions, with a significant centrality dependence
- Indication of stronger charm suppression w.r.t. beauty → quark-mass dependent energy loss
- Positive D-meson elliptic flow
- No large CNM effects supported by the p-Pb data → the strong suppression in central Pb-Pb collisions
 is largely a hot medium effect

Quarkonia

- New results on J/ψ suppression in Pb-Pb collisions at 5.02 TeV indicate similar suppression level as the 2.76 TeV data
- The p_{T} dependence of the J/ψ suppression suggests an important contribution from regeneration
- The new Y(1S) results at 5.02 TeV confirm the strong suppression observed in central Pb-Pb collisions at 2.76 TeV

Next steps and questions:

- Measure open heavy-flavor suppression down to $p_{\scriptscriptstyle T}$ =0
- Understand and disentangle CNM effects
- Is the observed open heavy-flavor v_2 of hydro origin?
- Does J/ψ flow ?
- Is the direct Y(1S) suppressed ?
- More Run-2 results coming soon!

Backup

Medium effects (the nuclear modification factor)

p-Pb, ALICE PRL110(2013)082302 Pb-Pb, ALICE, Phys.Lett.B720 (2013)52 Pb-Pb, CMS, EPJC (2012) 72 y, CMS, PLB 710 (2012) 256 W[±], CMS, PLB715 (2012) 66 Z⁰, CMS, PRL106 (2011) 212301

$$R_{AA} = \frac{1}{N_{coll}} \times \frac{Y_{AA}}{Y_{pp}}$$

- \rightarrow N_{coll} : the number of binary nucleonnucleon collisions
- > Superposition of NN collisions $\rightarrow R_{AA}=1$ Suppression $\rightarrow R_{AA}<1$ Enhancement $\rightarrow R_{AA}>1$
- Weakly interacting particles are not affected by the QGP
 - Photons, W[±] and Z⁰ bosons R_{AA} are compatible with 1

Strange D-meson production

- Hint for a smaller suppression of Ds mesons wrt non-strange D's
 - Expected if the charm hadronizes by picking up light quarks from the surrounding strangeness enhanced medium

Elliptic flow of heavy-flavor

ALICE, arXiv: 1606.00321

Significant non-zero elliptic flow observed for heavy-flavor electrons and D mesons

D – hadron correlations in pp and p-Pb

ALICE, arXiv: 1605.06963

- Look for hadronic activity near and away from the direction of the Dmeson momentum vector
- Very similar correlation functions obtained in both pp and p-Pb for all the scanned kinematic ranges
 - Charm-quark fragmentation unmodified by CNM effects?

Inclusive J/ψ suppression from Run-1

ALICE, JHEP1605 (2016) 179

- Much less suppression in central collisions compared to the observation of PHENIX at √s_{NN}=200 GeV
- Described by models in terms of J/ψ regeneration

J/psi nuclear modification in p-Pb

J/psi production in Pb-Pb collisions at 5.02 TeV

psi(2S)

Low- $p_{\scriptscriptstyle \perp}$ J/psi

Upsilon nuclear modification in p-Pb

Y(1S) suppression in Pb-Pb collisions at 5.02 TeV

Y(1S) suppression in Pb-Pb collisions at 5.02 TeV

Data compared with calculations of Emerick et al and Zhou et al, both implementing regeneration

Y(1S) production at 2.76 and 5.02 TeV

- Bottomonium is much less affected by regeneration effects → cleaner probe for the medium properties
- A strong Y(1S) suppression is observed in central collisions at both 2.76 and 5.02 TeV