

How to Resolve the Proton Radius Puzzle?

Gil Paz

Department of Physics and Astronomy, Wayne State University

Introduction: The proton radius puzzle

Form Factors

• Matrix element of EM current between nucleon states give rise to two form factors $(q = p_f - p_i)$

$$\langle N(p_f)|\sum_{q}e_q\,\bar{q}\gamma^{\mu}q|N(p_i)\rangle=\bar{u}(p_f)\left[\gamma^{\mu}F_1(q^2)+\frac{i\sigma_{\mu\nu}}{2m}F_2(q^2)q^{\nu}\right]u(p_i)$$

• Sachs electric and magnetic form factors

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2)$$
 $G_M(q^2) = F_1(q^2) + F_2(q^2)$
 $G_E^p(0) = 1$ $G_M^p(0) = \mu_p \approx 2.793$

• The slope of G_F^p

$$\left| \langle r^2 \rangle_E^p = 6 \frac{dG_E^p}{dq^2} \right|_{q^2 = 0}$$

determines the charge radius $r_E^p \equiv \sqrt{\langle r^2 \rangle_E^p}$

The proton magnetic radius

$$\langle r^2 \rangle_M^p = \frac{6}{G_M^p(0)} \frac{dG_M^p(q^2)}{dq^2} \Big|_{q^2=0}$$

Charge radius from atomic physics

$$\langle p(p_f)|\sum_{q} e_q \, \bar{q} \gamma^{\mu} q |p(p_i)\rangle = \bar{u}(p_f) \left[\gamma^{\mu} F_1^{p}(q^2) + \frac{i\sigma_{\mu\nu}}{2m} F_2^{p}(q^2) q^{\nu}\right] u(p_i)$$

• For a point particle amplitude for $p + \ell \rightarrow p + \ell$

$$\mathcal{M} \propto \frac{1}{q^2} \quad \Rightarrow \quad U(r) = -\frac{Z\alpha}{r}$$

• Including q^2 corrections from proton structure

$$\mathcal{M} \propto rac{1}{g^2}q^2 = 1 \quad \Rightarrow \quad U(r) = rac{4\pi Z lpha}{6} \delta^3(r) (r_E^p)^2$$

ullet Proton structure corrections $\left(m_r=m_\ell m_p/(m_\ell+m_p)pprox m_\ell
ight)$

$$\Delta E_{r_E^p} = \frac{2(Z\alpha)^4}{3n^3} m_r^3 (r_E^p)^2 \delta_{\ell 0}$$

• Muonic hydrogen can give the best measurement of r_F^p!

Charge radius from atomic physics

- Lamb shift in muonic hydrogen [Pohl et al. Nature **466**, 213 (2010)] $r_E^p = 0.84184(67)$ fm more recently $r_E^p = 0.84087(39)$ fm [Antognini et al. Science **339**, 417 (2013)]
- CODATA value [Mohr et al. RMP 80, 633 (2008)] $r_E^p = 0.87680(690)$ fm more recently $r_E^p = 0.87750(510)$ fm [Mohr et al. RMP 84, 1527 (2012)] extracted mainly from (electronic) hydrogen
- 5σ discrepancy!
- This is the proton radius puzzle

• What could the reason for the discrepancy?

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Hadronic Uncertainty? (Part 2 of this talk)

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Hadronic Uncertainty? (Part 2 of this talk)
- 3) New Physics?

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Hadronic Uncertainty? (Part 2 of this talk)
- 3) New Physics?
 - Declaimer: I will focus on published work I am involved in
 - For a review of other approaches see

[Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015)]

Part 1: Proton radii from scattering

What does the PDG say?

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

p CHARGE RADIUS

This is the rms charge radius, $\sqrt{\langle r^2 \rangle}$.

VALUE (fm)	DOCUMENT ID	DOCUMENT ID		COMMENT	
0.8768±0.0069	MOHR	80	RVUE	2006 CODATA value	
 ● ● We do not use the f 	ollowing data for av	erages	, fits, lim	nits, etc. • • •	
0.897 ±0.018	BLUNDEN	05		SICK 03 $+$ 2 γ correction	
0.8750 ± 0.0068	MOHR	05	RVUE	2002 CODATA value	
$0.895 \pm 0.010 \pm 0.013$	SICK	03		$ep \rightarrow ep$ reanalysis	
$0.830 \pm 0.040 \pm 0.040$	24 ESCHRICH	01		$ep \rightarrow ep$	
0.883 ±0.014	MELNIKOV	00		1S Lamb Shift in H	
0.880 ±0.015	ROSENFELD	R.00		ep + Coul. corrections	
0.847 ±0.008	MERGELL	96		ep + disp. relations	

Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)

0.877 ± 0.024	WONG 94	f reanaly	sis of Mainz <i>e p</i> data
0.865 ±0.020	MCCORD 91	l <i>e p</i> →	e p
0.862 ± 0.012	SIMON 80	$e p \rightarrow$	e p
0.880 ± 0.030	BORKOWSKI 74	4 <i>e p</i> →	e p
0.810 ± 0.020	AKIMOV 72	$e p \rightarrow$	e p
0.800 ±0.025	FREREJACQ 66	5 <i>e p</i> →	ep (CH ₂ tgt.)
0.805 ± 0.011	HAND 63	B <i>e p</i> →	e p
24 ESCHRICH 01 actually			

Form Factors: What we don't know

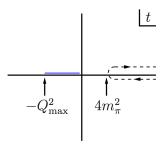
- The form factors are non-perturbative objects.
- **Nobody** knows the exact functional form of G_E^p and G_M^p
- They don't have to have a dipole/polynomial/spline or any other functional form
- \bullet Including such models can bias your extraction of r_{E}^{p} and r_{M}^{p}

Form Factors: What we do know

- Analytic properties of $G_E^p(t)$ and $G_M^p(t)$ are known
- They are analytic outside a cut $t \in [4m_\pi^2, \infty]$

[Federbush, Goldberger, Treiman, Phys. Rev. 112, 642 (1958)]

• e - p scattering data is in t < 0 region



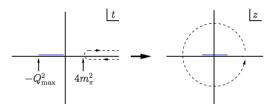
z expansion

• z expansion:

We can map the domain of analyticity onto the unit circle

$$z(t, t_{\mathrm{cut}}, t_0) = rac{\sqrt{t_{\mathrm{cut}} - t} - \sqrt{t_{\mathrm{cut}} - t_0}}{\sqrt{t_{\mathrm{cut}} - t} + \sqrt{t_{\mathrm{cut}} - t_0}}$$

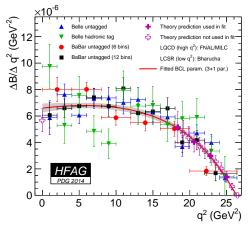
where $t_{\mathrm{cut}}=4m_\pi^2$, $z(t_0,t_{\mathrm{cut}},t_0)=0$



• Expand $G_{E,M}^p$ in a Taylor series in z: $G_{E,M}^p(q^2) = \sum_{k=0}^{\infty} a_k \, z(q^2)^k$

z expansion

- For meson form factors, z expansion is the method
- ullet E.g. $|V_{ub}|$ from exclusive $B o \pi \ell ar{
 u}$



[Heavy Flavor Averaging Group, arXiv:1412.7515]

Extracting r_F^p using the z expansion

- First use of the z expansion to extract r_E^p [Hill, GP PRD **82** 113005 (2010)]
- Proton: $Q^2 < 0.5 \text{ GeV}^2$

$$r_E^\rho = 0.870 \pm 0.023 \pm 0.012 \, \mathrm{fm}$$

Proton and neutron data

$$r_E^p = 0.880^{+0.017}_{-0.020} \pm 0.007\,\mathrm{fm}$$

• Proton, neutron and $\pi\pi$ data

$$r_F^p = 0.871 \pm 0.009 \pm 0.002 \pm 0.002 \,\mathrm{fm}$$

- Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)] $r_E^p = 0.84184(67)$ fm more recently $r_E^p = 0.84087(39)$ fm [Antognini et al. Science 339, 417 (2013)]
- CODATA value [Mohr et al. RMP **80**, 633 (2008)] $r_E^p = 0.87680(690)$ fm more recently $r_E^p = 0.87750(510)$ fm [Mohr et al. RMP **84**, 1527 (2012)]

Extracting r_M^p using the z expansion

z expansion study

[Zachary Epstein, GP, Joydeep Roy PRD 90, 074027 (2014)]

- Proton data : $r_M^p = 0.91^{+0.03}_{-0.06} \pm 0.02$ fm
- Proton and neutron data: $r_M^p = 0.87^{+0.04}_{-0.05} \pm 0.01$ fm
- Proton, neutron and $\pi\,\pi$ data: $r_M^{p}=0.87\pm0.02$ fm

PDG 2014:

- $r_M^p = 0.777 \pm 0.017$ fm [Bernauer et al. PRL **105**, 242001 (2010)]
- $-r_M^p = 0.876 \pm 0.019$ fm [Borisyuk NPA **843**, 59 (2010)]
- $r_M^p = 0.854 \pm 0.005$ fm [Belushkin et al. PRC **75**, 035202 (2007)]

Other non-PDG values:

- $r_M^p = 0.855 \pm 0.035$ fm [Sick Prog.Part.Nucl.Phys. **55**, 440 (2005)]
- $r_M^p = 0.86^{+0.02}_{-0.03}$ fm [Lorenz et al. EPJA **48**, 151 (2012)]
- $r_M^p = 0.78 \pm 0.08$ fm [Karshenboim PRD **90** 053013 (2014) 5]

Latest z expansion fit

- Most recent study using the z expansion
 [Gabriel Lee, Arrington, Hill, PRD 92, 013013 (2015)]
 Analyze the "Mainz" data set
 [Bernauer et al. PRL 105, 242001 (2010)]
 and world data (excluding Mainz)
- World data

[Lee, Arrington, Hill '15]
$$r_E^p = 0.918 \pm 0.024 \text{ fm}$$

[Hill , GP '10] $r_E^p = 0.870 \pm 0.023 \pm 0.012 \text{ fm}$
[Lee, Arrington, Hill '15] $r_M^p = 0.913 \pm 0.037 \text{ fm}$
[Epstein, GP, Roy '14] $r_M^p = 0.910^{+0.030}_{-0.060} \pm 0.020 \text{ fm}$

Mainz data

$$r_F^p = 0.895 \pm 0.020 \text{ fm}$$
 $r_M^p = 0.773 \pm 0.038 \text{ fm}$

Part 2: Connecting muon-proton scattering and muonic hydrogen

The bottom line

- Scattering:
- World e-p data [Lee, Arrington, Hill '15] $r_F^p = 0.918 \pm 0.024$ fm
- Mainz e-p data [Lee, Arrington, Hill '15] $r_F^p = 0.895 \pm 0.020$ fm
- Proton, neutron and π data [Hill , GP '10] $r_F^p=0.871\pm0.009\pm0.002\pm0.002\,{
 m fm}$
- Muonic hydrogen
- [Pohl et al. Nature **466**, 213 (2010)] $r_F^p = 0.84184(67)$ fm
- [Antognini et al. Science **339**, 417 (2013)] $r_F^p = 0.84087(39)$ fm
- The bottom line:
 using z expansion scattering disfavors muonic hydrogen
- Is there a problem with muonic hydrogen theory?

Muonic hydrogen theory

- Is there a problem with muonic hydrogen theory?
- Potentially yes!
 [Hill, GP PRL 107 160402 (2011)]
- Muonic hydrogen measures ΔE and translates it to r_E^p
- [Pohl et al. Nature **466**, 213 (2010)] $\Delta E = 209.9779(49) 5.2262(r_E^p)^2 + \frac{0.0347(r_E^p)^3}{1000} \text{ meV}$
- [Antognini et al. Science **339**, 417 (2013)] $\Delta E = 206.0336(15) 5.2275(10)(r_E^p)^2 + 0.0332(20) \text{ meV}$
- In both cases apart from r_F^p need two-photon exchange

• In both cases apart from r_E^p we have two-photon exchange

• In both cases apart from r_E^p we have two-photon exchange

$$\frac{1}{2} \sum_{s} i \int d^4 x \, e^{iq \cdot x} \langle \mathbf{k}, s | T \{ J_{\text{e.m.}}^{\mu}(x) J_{\text{e.m.}}^{\nu}(0) \} | \mathbf{k}, s \rangle$$

$$= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) W_1 + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^2} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^2} \right) W_2$$

• In both cases apart from r_F^p we have two-photon exchange

$$\frac{1}{2} \sum_{s} i \int d^4 x \, e^{iq \cdot x} \langle \mathbf{k}, s | T \{ J_{\text{e.m.}}^{\mu}(x) J_{\text{e.m.}}^{\nu}(0) \} | \mathbf{k}, s \rangle$$

$$= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) W_1 + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^2} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^2} \right) W_2$$

• Dispersion relations ($\nu = 2k \cdot q$, $Q^2 = -q^2$)

$$W_1(\nu,Q^2) = W_1(0,Q^2) + rac{
u^2}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_1(
u',Q^2)}{
u'^2(
u'^2 -
u^2)}$$

$$W_2(\nu, Q^2) = \frac{1}{\pi} \int_{\nu_{\text{corr}}(Q^2)^2}^{\infty} d\nu'^2 \frac{\text{Im} W_2(\nu', Q^2)}{\nu'^2 - \nu^2}$$

W₁ requires subtraction...

• In both cases apart from r_F^p we have two-photon exchange

 Imaginary part of TPE related to data: form factors, structure functions

• In both cases apart from r_F^p we have two-photon exchange

- Imaginary part of TPE related to data: form factors, structure functions
- Cannot reproduce it from its imaginary part:
 Dispersion relation requires subtraction
- Need poorly constrained non-perturbative function $W_1(0,Q^2)$ Can calculate it
- In small Q^2 limit using NRQED [Hill, GP, PRL $\mathbf{107}$ 160402 (2011)]
- In large Q^2 limit using OPE [J. C. Collins, NPB **149**, 90 (1979)]

• In both cases apart from r_F^p we have two-photon exchange

- Imaginary part of TPE related to data: form factors, structure functions
- Cannot reproduce it from its imaginary part:
 Dispersion relation requires subtraction
- Need poorly constrained non-perturbative function $W_1(0,Q^2)$ Can calculate it
- In small Q^2 limit using NRQED [Hill, GP, PRL $\mathbf{107}$ 160402 (2011)]
- In large Q^2 limit using OPE [J. C. Collins, NPB $\mathbf{149}$, 90 (1979)]
- Introduces hard to quantify hadronic uncertainty

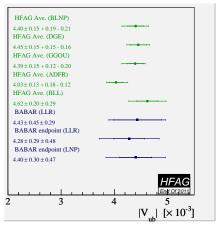
Variety of approaches

 Considering far-reaching implications of the puzzle we should explore a variety of approaches:

```
[Nevado, Pineda, PRC 77, 035202 (2008)]
[Peset, Pineda, EPJA 51, 32 (2015)]
[Peset, Pineda, NPB 887, 69 (2014)]
[Carlson, Vanderhaeghen, PRA 84, 020102 (2011)]
[Birse, McGovern, EPJA 48, 120 (2012)]
[Miller PLB 718, 1078 (2013)]
[Gorchtein, Llanes-Estrada, Szczepaniak PRA 87, 052501 (2013)]
[Alarcon, Lensky, Pascalutsa, EPJC 74, 2852 (2014)]
[Tomalak, Vanderhaeghen, PRD 90, 013006 (2014)]
[Tomalak, Vanderhaeghen, EPJC 76, 125 (2016)]
```

Variety of approaches

- Considering far-reaching implications of the puzzle we should explore a variety of approaches
- What you want to have:



• In the following: $W_i \rightarrow NRQED$

Why NRQED?

• Solving Schrödinger equation for 1/r potential

$$E_n = -\frac{1}{2}m_r c^2 \alpha^2 \frac{1}{n^2}$$

where $m_r = m_\mu m_p/(m_\mu + m_p) \approx m_\mu$

- Muon momentum in muonic hydrogen $p \sim m_{\mu} c \alpha \sim 1 \text{ MeV}$
- Muon is non-relativistic

Can use Non Relativistic QED (NRQED)

[Caswell, Lepage PLB **167**, 437 (1986); Kinoshita Nio PRD **53**, 4909 (1996); Manohar PRD **56**, 230 (1997)]

• For an introduction to NRQED see [GP MPLA 30, 1550128 (2015)]

NRQED

$$\mathcal{L}_{p} = \psi_{p}^{\dagger} \left\{ iD_{t} + \frac{\mathbf{D}^{2}}{2m_{p}} + \frac{\mathbf{D}^{4}}{8m_{p}^{3}} + c_{F}e\frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2m_{p}} + c_{D}e\frac{[\boldsymbol{\partial} \cdot \mathbf{E}]}{8m_{p}^{2}} \right.$$

$$+ ic_{S}e\frac{\boldsymbol{\sigma} \cdot (\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D})}{8m_{p}^{2}} + c_{W1}e\frac{\{\mathbf{D}^{2}, \boldsymbol{\sigma} \cdot \mathbf{B}\}}{8m_{p}^{3}}$$

$$- c_{W2}e\frac{D^{i}\boldsymbol{\sigma} \cdot \mathbf{B}D^{i}}{4m_{p}^{3}} + c_{p'p}e\frac{\boldsymbol{\sigma} \cdot \mathbf{D}\mathbf{B} \cdot \mathbf{D} + \mathbf{D} \cdot \mathbf{B}\boldsymbol{\sigma} \cdot \mathbf{D}}{8m_{p}^{3}}$$

$$+ ic_{M}e\frac{\{\mathbf{D}^{i}, [\boldsymbol{\partial} \times \mathbf{B}]^{i}\}}{8m_{p}^{3}} + c_{A1}e^{2}\frac{\mathbf{B}^{2} - \mathbf{E}^{2}}{8m_{p}^{3}} - c_{A2}e^{2}\frac{\mathbf{E}^{2}}{16m_{p}^{3}} + \dots \right\}\psi_{p}$$

- The $1/m_p^4$ calculated in [Hill, Lee, GP, Mikhail P. Solon, PRD **87** 053017 (2013)]
- Need also

$$\mathcal{L}_{\mathrm{contact}} = d_1 rac{\psi_{p}^{\dagger} oldsymbol{\sigma} \psi_{p} \cdot \psi_{\ell}^{\dagger} oldsymbol{\sigma} \psi_{\ell}}{m_{\ell} m_{p}} + d_2 rac{\psi_{p}^{\dagger} \psi_{p} \psi_{\ell}^{\dagger} \psi_{\ell}}{m_{\ell} m_{p}}$$

NRQED

- Matching
- Operators with one photon coupling: c_i given by $F_i^{(n)}(0)$
- Operators with only two photon couplings: c_{A_i} given by forward and backward Compton scattering
- d_i from two-photon amplitude
- From c_i and d_i determine proton structure correction, e.g.

$$\delta E(n,\ell) = \delta_{\ell 0} \frac{m_r^3 (Z\alpha)^3}{\pi n^3} \left(\frac{Z\alpha\pi}{2m_p^2} c_D^{\rm proton} - \frac{d_2}{m_\ell m_p} \right)$$

• Bottom line: need $c_D \Leftrightarrow r_E^p$ and d_2 d_2 suffers from hadronic uncertainty What to do?

Hadronic uncertainty d_2

- d₂ suffers from hadronic uncertainty
 What to do?
- Improve modeling [Hill, GP in progress]
 How large can it be?
- But even if d_2 can be large it does not follow that it must be large
- Experimental test: μp scattering MUSE (MUon proton Scattering Experiment)

MUSE

• Muonic hydrogen: Muon momentum $\sim m_{\mu}c\alpha \sim 1$ MeV Both proton and muon non-relativistic

MUSE

• Muonic hydrogen: Muon momentum $\sim m_{\mu}c\alpha \sim 1$ MeV Both proton and muon non-relativistic

MUSE:

Muon momentum $\sim m_{\mu} \sim 100$ MeV Muon is relativistic, proton is still non-relativistic

MUSE

• Muonic hydrogen: Muon momentum $\sim m_{\mu}c\alpha \sim 1$ MeV Both proton and muon non-relativistic

MUSE:

Muon momentum $\sim m_{\mu} \sim 100$ MeV Muon is relativistic, proton is still non-relativistic

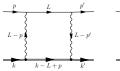
- QED-NRQED effective theory:
- Use QED for muon
- Use NRQED for proton $m_{\mu}/m_{p}\sim 0.1$ as expansion parameter
- A new effective field theory suggested in [Hill, Lee, GP, Mikhail P. Solon, PRD 87 053017 (2013)]

• Example: TPE at the lowest order in $1/m_p$ [Steven P. Dye, Matthew Gonderinger, GP, PRD **94** 013006 (2016)]

- Example: TPE at the lowest order in $1/m_p$ [Steven P. Dye, Matthew Gonderinger, GP, PRD **94** 013006 (2016)]
- Consider muon-proton scattering $\mu(p) + p(k) \rightarrow \mu(p') + p(k')$
- At lowest order in $1/m_p$: $p^0 = p'^0 \Rightarrow \delta(p^0 p'^0)$
- At the proton rest frame $k = (m_p, \vec{0}) \Rightarrow k^0 = 0$ in NRQED

- Example: TPE at the lowest order in $1/m_p$ [Steven P. Dye, Matthew Gonderinger, GP, PRD **94** 013006 (2016)]
- Consider muon-proton scattering $\mu(p) + p(k) \rightarrow \mu(p') + p(k')$
- At lowest order in $1/m_p$: $p^0 = p'^0 \Rightarrow \delta(p^0 p'^0)$
- At the proton rest frame $k = (m_p, \vec{0}) \Rightarrow k^0 = 0$ in NRQED
- ullet NRQED propagator: $\dfrac{1}{\mathit{I^0}-\vec{\mathit{I}^2}/2\mathit{M}+\mathit{i}\epsilon}$

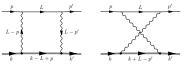
- Example: TPE at the lowest order in $1/m_p$ [Steven P. Dye, Matthew Gonderinger, GP, PRD **94** 013006 (2016)]
- Consider muon-proton scattering $\mu(p) + p(k) \rightarrow \mu(p') + p(k')$
- At lowest order in $1/m_p$: $p^0 = p'^0 \Rightarrow \delta(p^0 p'^0)$
- At the proton rest frame $k=(m_p,\vec{0})\Rightarrow k^0=0$ in NRQED
- NRQED propagator: $\frac{1}{l^0 \vec{l}^2/2M + i\epsilon}$



$$\frac{1}{p^{0}-I^{0}+i\epsilon}+\frac{1}{I^{0}-p^{0}+i\epsilon} \Rightarrow \delta(L^{0}-p^{0})$$

In total

$$\delta(p^0 - p'^0) \, \delta(L^0 - p^0) = \delta(L^0 - p^0) \, \delta(L^0 - p'^0)$$



• The amplitude

The cross section

$$\frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2 4E^2\left(1 - v^2\sin^2\frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z\alpha\pi v\sin\frac{\theta}{2}\left(1 - \sin\frac{\theta}{2}\right)}{1 - v^2\sin^2\theta}\right]$$

$$Z=1, E=$$
 muon energy, $v=|\vec{p}|/E, q=p'-p, \theta$ scattering angle

QED-NRQED result

$$\frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2 4E^2\left(1 - v^2\sin^2\frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z\alpha\pi v\sin\frac{\theta}{2}\left(1 - \sin\frac{\theta}{2}\right)}{1 - v^2\sin^2\theta}\right]$$

QED-NRQED result

$$\frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2 4E^2 \left(1 - v^2 \sin^2 \frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z\alpha\pi v \sin \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2}\right)}{1 - v^2 \sin^2 \theta}\right]$$

Same result as scattering relativistic lepton off static 1/r potential [Dalitz, Proc. Roy. Soc. Lond. 206, 509 (1951)]
 reproduced in [Itzykson, Zuber, "Quantum Field Theory"]

QED-NRQED result

$$\frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2 4E^2\left(1 - v^2\sin^2\frac{\theta}{2}\right)}{\vec{q}^4} \left[1 + \frac{Z\alpha\pi v\sin\frac{\theta}{2}\left(1 - \sin\frac{\theta}{2}\right)}{1 - v^2\sin^2\theta}\right]$$

- Same result as scattering relativistic lepton off static 1/r potential [Dalitz, Proc. Roy. Soc. Lond. 206, 509 (1951)]
 reproduced in [Itzykson, Zuber, "Quantum Field Theory"]
- Same result as $m_p \to \infty$ of "point particle proton" QED scattering (For $m_p \to \infty$ only proton charge is relevant)

QED-NRQED Effective Theory beyond $m_p \to \infty$ limit

- QED-NRQED allows to calculate $1/m_p$ corrections
- Example: one photon exchange $\mu + p \rightarrow \mu + p$: QED-NRQED = $1/m_p$ expansion of form factors [Steven P. Dye, Matthew Gonderinger, GP, PRD **94** 013006 (2016)]

Matching

QED, QCD

 $G_{E,M}$, Structure func., $W_1(0, Q^2)$

Matching

QED, QCD
$$G_{E,M}$$
, Structure func., $W_1(0, Q^2)$

Scale: $m_p \sim 1 \; {\sf GeV}$

Matching

QED, QCD
$$G_{E,M}$$
, Structure func., $W_1(0, Q^2)$

Scale:
$$m_p \sim 1 \; {
m GeV}$$

QED-NRQED:
$$MUSE$$
 $r_E^p, \bar{\mu}\gamma^0\mu\psi_p^\dagger\psi_p$

Matching

QED, QCD	$G_{E,M}$, Structure func., $W_1(0,Q^2)$
Scale: $m_p \sim 1 \; { m GeV}$	\Downarrow
QED-NRQED: MUSE	r_E^P , $\bar{\mu}\gamma^0\mu\psi_P^\dagger\psi_P$
Scale: $m_{\mu} \sim 0.1~{ m GeV}$	\downarrow

Matching

QED, QCD	$G_{E,M}$, Structure func., $W_1(0,Q^2)$
Scale: $m_p \sim 1 \; { m GeV}$	\downarrow
QED-NRQED: MUSE	r_E^p , $\bar{\mu}\gamma^0\mu\psi_p^\dagger\psi_p$
Scale: $m_{\mu} \sim 0.1~{ m GeV}$	\
NRQED-NRQED: muonic H	$r_{E}^{m{p}},\;\psi_{\mu}^{\dagger}\psi_{\mu}\psi_{m{p}}^{\dagger}\psi_{m{p}}$

Matching

QED, QCD
$$G_{E,M}$$
, Structure func., $W_1(0,Q^2)$
Scale: $m_p \sim 1$ GeV ψ
QED-NRQED: $MUSE$ r_E^p , $\bar{\mu}\gamma^0\mu\psi_p^\dagger\psi_p$
Scale: $m_\mu \sim 0.1$ GeV ψ
NRQED-NRQED: $muonic~H$ r_E^p , $\psi_\mu^\dagger\psi_\mu\psi_p^\dagger\psi_p$

• Need to match QED-NRQED contact interaction, e.g. $\bar{\mu}\gamma^0\mu\psi_p^\dagger\psi_p$ to NRQED-NRQED contact interaction, e.g. $\psi_\mu^\dagger\psi_\mu\psi_p^\dagger\psi_p$ [Dye, Gonderinger, GP *in progress*]

- To do list:
- 1) Relate QED-NRQED contact interactions to NRQED contact interactions and $W_1(0, Q^2)$
- 2) Calculate $d\sigma(\mu+p
 ightarrow \mu+p)$ and asymmetry in terms of r_E^p and d_2
- 3) Direct relation between μ -p scattering and muonic H

- ullet Proton radius puzzle: $>5\sigma$ discrepancy between
- r_E^p from muonic hydrogen
- r_E^p from hydrogen and e p scattering
- After 6 years the origin is still not clear
- 1) Is it a problem with the electronic extraction?
- 2) Is it a hadronic uncertainty?
- 3) is it new physics?
 - Motivates a reevaluation of our understanding of the proton

• Presented two topics:

- Presented two topics:
- Extraction of proton radii from scattering:
 Use an established tool of the z expansion
 Studies disfavor the muonic hydrogen value

- Presented two topics:
- Extraction of proton radii from scattering:
 Use an established tool of the z expansion
 Studies disfavor the muonic hydrogen value
- 2) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED

- Presented two topics:
- Extraction of proton radii from scattering:
 Use an established tool of the z expansion
 Studies disfavor the muonic hydrogen value
- 2) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED
 - Much more work to do!
 - Thank you