Fit of Electroweak Parameters in Polarised Deep-Inelastic Scattering using data from the H1 experiment

Daniel Britzger for H1 Collaboration and H. Spiesberger

ICHEP 2016 – 38th International Conference on High Energy Physics Chicaco, II, US 08/05/2016

Deep-inelastic scattering

Factorization in ep collisions

Hard scattering coefficients and parton distribution functions (PDFs)

$$\sigma_{ep \to eX} = f_{p \to i} \otimes \hat{\sigma}_{ei \to eX}$$

PDFs are not observables – only cross sections are

PDFs are largely determined from DIS data

Polarised deep-inelastic ep scattering

Neutral and charged current at tree level

$$\frac{d\sigma_{NC}^{\pm}}{dQ^{2}dx} = \frac{2\pi\alpha^{2}}{x} \left[\frac{1}{Q^{2}}\right]^{2} (Y_{+}F_{2}+Y_{-}xF_{3}+y^{2}F_{L})$$

$$\frac{d\sigma_{CC}^{\pm}}{dQ^{2}dx} = \frac{1\pm P}{2} \frac{G_{F}^{2}}{4\pi x} \left[\frac{m_{W}^{2}}{m_{W}^{2}+Q^{2}}\right]^{2} (Y_{+}W_{2}^{\pm}\pm Y_{-}xW_{3}^{\pm}-y^{2}W_{L}^{\pm})$$

$$Y_{+} = 1\pm(1-\gamma)^{2}$$

Calculations in on-shell scheme

$$G_{F} = \frac{2\pi\alpha}{2\sqrt{2}m_{W}^{2}} \left(1 - \frac{m_{W}^{2}}{m_{Z}^{2}}\right)^{-1} (1 + \Delta r)$$

Corrections to G_F

$$\Delta r = \Delta r(\alpha, m_W, m_Z, m_t, m_H, ...)$$

Generalised structure functions

$$F_{2} = F_{2}^{\gamma} + \kappa_{z} (-v_{e} \mp Pa_{e}) F_{2}^{\gamma z} + \kappa_{z}^{2} (v_{e}^{2} + a_{e}^{2} \pm Pv_{e} a_{e}) F_{2}^{z}$$

$$x F_{3} = + \kappa_{z} (\pm a_{e} + Pv_{e}) F_{3}^{\gamma z} + \kappa_{z}^{2} (\mp 2v_{e} a_{e} - P(v_{e}^{2} + a_{e}^{2})) x F_{3}^{z}$$

$Z^{0}-exchange \\ \kappa_{Z}(Q^{2}) = \frac{Q^{2}}{Q^{2}+m_{Z}^{2}} \frac{G_{F}m_{Z}^{2}}{2\sqrt{2}\pi\alpha}$

Structure functions in QPM

 $[F_{2}, F_{2}^{\gamma Z}, F_{2}^{Z}] = x \sum_{q} [e_{q}^{2}, 2e_{q}v_{q}, v_{q}^{2} + a_{q}^{2}] \{q + \bar{q}\}$

$$xF_3^{\gamma Z}, xF_3^{Z} = x \sum_q \left[2e_q a_q, 2v_q a_q \right] \{q - \overline{q}\}$$

Weak couplings to Z-boson

 $v_{f} = I_{f,L}^{(3)} - 2e_{f}\sin^{2}\theta_{W} \qquad (f = e, u, d, ...)$ $a_{f} = I_{f,L}^{(3)}$

Parameters to calculations Parameters to cross section calculation: α , m_z , $m_{w'}$, $(m_t, m_{H'}, ...)$ More general, also couplings: v_e , a_e , v_u , a_u and v_d , a_d

HERA Operation

HERA-I operation 1993-2000 Status: 1-July-2007 400 • E_e = 27.6 GeV H1 Integrated Luminosity / pb⁻¹ electrons • E_p = 820 / 920 GeV **H1** positrons low E • √s = 301 & 318 GeV int. Lumi. ~ 110 pb⁻¹ Longituding Manual Dologico ex beam 300 HERA-2 HERA-II operation 2003-2007 • E_e = 27.6 GeV • E_p = 920 GeV 200 • √s = 318 GeV int. Lumi. ~ 330 pb⁻¹ Longitudinally polarised leptons HERA-1 Polarisation: $P_e = \frac{N_R - N_L}{N_R + N_L}$ 100 Low-Energy Run 2007 • E_e = 27.6 GeV 500 1000 1500 0 • E_n = 575 & 460 GeV **Days of running**

• √s = 225 & 251 GeV

- Dedicated F_L measurement

The H1 Detector

H1 multi-purpose detector

Asymmetric design Trackers

- Silicon tracker
- Jet chambers
- Proportional chambers

Calorimeters

- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter Superconducting solenoid
- 1.15T magnetic field Muon detectors

Drawing of the H1 experiment

Excellent control over experimental uncertainties

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 1.5 2.5%
- · Continuous upgrades with time

H1 Structure Function Data

Dataset	Q ² min	Q2 max	No. Points	Polarisation [%]	Reference
e+ Combined low-Q ²	12 [0.5]	150	81 [262]		EPJ C71 (2011) 1579 arXiv:1012.4355
e + Combined low- E_{p}	12 [1.5]	90	118 [136]		
e+ NC 94-97	150	30000	130		EPJ C13 (2000) 609 hep-ex/9908059
e+ CC 94-97	300	15 000	25		
e– NC 98-99	150	30 000	126		EPJ C19 (2001) 269 hep-ex/0012052
e- CC 98-99	300	15 000	28		
e– NC 98-99 high y	100	800	13		EPJ C30 (2003) 1 hep-ex/0304003
e+ NC 99-00	150	30 000	147		
e+ CC 99-00	300	15 000	28		
e+ NC high y	60	800	11		JHEP 1209 (2012) 061 arXiv:1206.7007
e– NC high y	60	800	11		
e+ NC L	120	30 000	137	-37.0 ± 1.0	
e+ CC L	300	15 000	28	-37.0 ± 1.0	
e+ NC R	120	30 000	137	$+32.5 \pm 0.7$	
e+ CC R	300	15 000	28	$+32.5 \pm 0.7$	
e– NC L	120	50 000	138	-25.8 ± 0.7	
e– CC L	300	30 000	29	-25.8 ± 0.7	
e– NC R	120	30 000	139	$+36.0 \pm 0.7$	
e– CC R	300	15 000	28	$+36.0 \pm 0.7$	

Fit methology I

Determine light-quark couplings

• Use iterative minimisation procedure ('fit') of cross section predictions to data

Unfortunate correlation

- PDFs have considerable uncertainties
- These PDFs are essentially determined from H1 structure function data
 -> Large correlations
- Consider PDF uncertainty by simultaneous fit of PDFs and light quark couplings

Consistency of fit-parameters in SM formalism

• Perform calculations strictly in on-shell scheme Parameters are: α , m_Z , m_W , $(m_t, m_H, ...)$

Polarisation measurement

- Measurements of the beam polarisations are measurements on their own
- -> Consider these measurements as independent measurements in fit

1-loop EW corrections

- May be considered in terms of 'EW form factors'
- Are ignored in the present analysis, but will be included in the future

Fit methology II

New C++-based fitting code for PDF and more general fits developed (Alpos)

- DGLAP evolution of PDFs in NNLO QCD (QCDNUM with ZMVFNS)
- PDFs are parameterised at starting scale $\dot{Q}_{0^2} = 1.9 \text{GeV}^2$ (similar to HERAPDF2.0)

• Use only data with $Q^2 >= 12 \text{ GeV}^2$

χ² Definition

- Uncertainties on cross sections are assumed to be 'log-normal' distributed (relative uncertainties)
- · Uncertainties on polarisation measurements are assumed to be 'normal' distributed
- · Correlations of syst. uncertainties between different datasets are considered

$$\chi^{2} = (\log(d) - \log(t))^{T} V_{R}^{-1} (\log(d) - \log(t)) + (d - t)^{T} V_{A}^{-1} (d - t)$$

Fit parameters

- 13 PDF parameters
- 4 polarisation values
- 4 Light-quark couplings (or other SM parameters)
- More general also 'nuisance parameters' of syst. uncertainties

Light quark couplings

Couplings of light quarks to Z-boson

- χ² / ndf = 1370.5 / (1388 21)
- *u*-type coupling better constrained than *d*-type coupling
 -> sensitivity from valence quarks
- Results compatible with SM expectation
- PDF uncertainties are small

Comparison to H1 HERA-I

Phys.Lett.B 632 (2006) 35

- Considerably improved sensitivity using final H1 HERA-II data
- Polarisation in HERA-II important vor vector couplings

Fit: PDF + 2 couplings

- Reduced correlations and uncertainties
- Correlations between a_u - a_d and v_u - v_d are large

Light quark couplings

Couplings of light quarks to Z-boson

- LEP&SLD [Phys. Rept. 427 (2006) 257] Effective couplings from asymmetry at Z-pole
- D0 [Phys. Rev. D 84 (2011) 012007] Forward-backward charge asymmetry

Comparable precision of complementary processes

38th ICHEP - Chicago, II

Study of Standard Model Parameters

Standard Model is now overconstrained

- Important to study consistency in many complementary processes
- HERA: Space-like momentum transfers
- Only purely virtual exchange of bosons

$(m_w - m_z) + PDF$ fits

- Assume *α* is known
- on-shell masses $m_{\rm w}$ and m_z are only free EW parameters
- Agreeement within PDG14 SM values
- Large correlation between $m_{\rm w}$ and $m_{\rm Z}$

Mass of W-boson

Take other masses (m_z) as external input to calculations

 $m_{W} = 80.407 \pm 0.118 \text{ (exp,pdf-fit)} \pm 0.005 \text{ (}m_{Z'}m_{t'}m_{H}\text{)} \text{ GeV}$

Approx. half the exp. uncertainty may be attributed to PDFs Compare to H1 HERA-I: $m_w = 80.786 \pm 0.205$ (exp) $^{+0.063}_{-0.098}$ (th) GeV

 $m_{W,PDG} = 80.385 \pm 0.015 \text{ GeV}$

Study of Standard Model Parameters

Different view on SM parameters

• Fermi coupling constant G_F

$$G_F = \frac{\pi \alpha}{\sqrt{2} m_W^2 \sin^2 \theta_W} (1 + \Delta r)$$

• Weak mixing angle

Perform calculations consistently in on-shell scheme (α,m_z,m_w)

• Calculate m_z (iteratively) from G_F or $sin^2\theta_W$ Results from fits together with PDF and m_W

- H1 values consistent with precise values from PDG
- Correlation to m_w are different for m_z , $sin^2\theta_w$ and G_F

38th ICHEP - Chicago, II

Daniel Britzger – H1 Electroweak Fit

Exploit Q² dependence of data

Virtually exchanged bosons allow for SM tests at various energy scales

- Weak mixing angle is extracted for different scales $\mu = \sqrt{Q^2}$
- Simultaneous fit of PDF and values of $sin^2\theta_w$
- Data are subdivided into different Q² regions each with independent $\sin^2\theta_w(Q^2)$

Results

- Results compatible with precise value from Z-pole measurements
- Unique measurement of weak mixing angle at different scales
- Comparison to MSbar values straight forward

Summary and Outlook

Light quark couplings to Z-boson

- Couplings determined from all H1 inclusive NC and CC data
- Longitudinal polarisation improves significantly H1 HERA-I result
- Values are consistent with SM expectations and compatible with other collider data

Standard model tests

- SM parameters are tested in deep-inelastic scattering
- Good consistency is found for $m_{z},\,m_{w},\,G_{F}$ and $sin^{2}\Theta_{w}$
- Weak mixing angle is determined at different scales in a single experiment

W-boson mass

- W-boson mass determined with an experimental precision of 118 MeV
- Fitted value consistent with precise direct measurements
- Significantly improves H1 HERA-I results ($\Delta m_w \sim 200 \text{ MeV}$)

Outlook

- Calculations to be supplemented with full 1-loop EW corrections at lepton vertex
- -> NNLO-QCD + NLO-EW fit to H1 data

H1prelim-16-041

Comparison H1 vs. H1+ZEUS data

ZEUS Collaboration

- Fit of PDF + Electroweak parameters to H1 and ZEUS data Phys. Rev. D 93 (2016) 092002
 - All ZEUS data (incl. HERA-II polarised)
 - H1 HERA-I data
 - H1 HERA-II data (unpolarised, i.e. corrected for lepton beam polarisation)
- Results from ZEUS Collaboration taking H1 data and ZEUS data compatible with H1 results alone Both for HERA-I and HERA-II
- Results from both experiments with somewhat higher precision than H1 alone
- H1 data alone very constraining for u-type quarks
- 'Including' ZEUS data constains better dtype axial coupling

