Studies of jet quenching in PbPb collisions at CMS

New run2 results

Marta Verweij (CERN) for the CMS collaboration

August 5, 2016 ICHEP, Chicago

Run2 heavy-ion data taken in November-December 2015 at 5.02 TeV pp: 25.8 pb⁻¹

PbPb: 404 µb⁻¹

Nuclear PDF

dijet pseudorapidity

With pp data at 5 TeV, nuclear PDF can be further constrained

Proton PDF: NLO calculations too wide
→ cancels in pPb-pp difference

pPb-pp: good agreement with EPS09 discrepancy with DSSZ and nCTEQ

High p_T hadrons

Nuclear modification factor (R_{AA}) measured with high p_T charged hadron production

Strong suppression wrt pp in central heavy ion collisions

R_{AA} at 5.02 similar to 2.76 TeV

→ does not imply same medium temperature

Dijet energy balance

Direct observation of jet quenching during run1: Dijets less balanced in central PbPb collisions due to energy loss

Dijet energy balance at 5.02 TeV

Dijet selection:

$$|\eta| < 1.5$$

 $p_{T,1} > 100 \text{ GeV/c}$
 $p_{T,2} > 40 \text{ GeV/c}$
 $\Delta \phi_{1,2} > 2\pi/3$

Dijet imbalance

$$x_J = p_{T,2} / p_{T,1}$$

Also at 5.02 TeV: dijets less balanced in central PbPb collisions

Less pronounced than at 2.76 TeV due to underlying parton spectrum

CMS-HIN-16-005

b-dijets

70% from b-dijets from flavor creation
→ mainly probing energy loss of quarks

b-jets are identified using secondary vertex

Efficiency evolves as function of centrality

Tight working points to optimize purity

Light vs heavy dijet p_T balance

Light vs heavy dijet p_T balance

b-dijets

Very similar dijet imbalance for light and heavy quarks

Light vs heavy dijet p_T balance

Very similar dijet imbalance for light and heavy quarks

Z-jet correlation

Z doesn't interact with QCD medium

- → Absolute measure of recoiling parton energy
- → Mostly light quarks

Z-jet measurement

Z-jet energy balance

Less balanced in PbPb compared to pp

Z-jet azimuthal correlation

Hint of narrowing Statistical or physics?

Splitting function

Goal: understand the evolution of the parton shower in medium Probing the role of color coherence

2 coherent emitters: color disconnected subjets

Fig. taken from *Phys.Lett.B* **725** (2013) 357–360

1 coherent emitter: color connected subjets

Tool: first splitting in parton shower \rightarrow only using hard jet components

Splitting function

Goal: understand the evolution of the parton shower in medium Probing the role of color coherence

2 coherent emitters: color disconnected subjets

Fig. taken from *Phys.Lett.B* **725** (2013) 357–360

1 coherent emitter: color connected subjets

Tool: first splitting in parton shower \rightarrow only using hard jet components

- Anti-k_T jet is re-clustered with Cambridge/Aachen (CA)
- Decluster the angular-ordered CA tree
- 3) Drop branches until Soft Drop condition is satisfied
- 4) Extract the 2 branches after grooming for physics → subjets

Softdrop condition

Softdrop = Jet grooming technique removes large-angle soft radiation + remaining background

We use β = 0 and z_{cut} = 0.1 All soft emissions are removed Equivalent to modified Mass Drop

[1] Larkoski, Marzani, Thaler Phys. Rev. D91:111501 (2015) Soft Drop: JHEP 1405 (2014) 146

Soft Drop condition

$$z>z_{\mathrm{cut}}\,\theta^{\beta}_{\uparrow}$$
 energy angular exponent

$$z_{\rm g} = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

Momentum fraction carried by the subleading branch of first splitting

Groomed energy fraction

Larger amount of energy gets groomed away in PbPb collisions

Groomed energy fractions well described by MC

PbPb vs pp

p_{T,iet}: 140-160 GeV

Central

Strong modification of splitting observed in central PbPb collisions Branching more imbalanced in central PbPb

Jet p_T dependence

Modification gets weaker when increasing jet p_T

Due to normalization, cannot distinguish between increase at low $z_{\rm g}$ or suppression at high $z_{\rm q}$ $\frac{\rm CMS-PAS-HIN-16-006}{\rm CMS-PAS-HIN-16-006}$

Model comparison

Comparison to jet quenching JEWEL MC event generator General trend of data is described by JEWEL

JEWEL MC, K. Zapp et al, JHEP03 (2013) 080. This calculation: R. Kunnawalkam Elayavalli and K. Zapp in preparation

Model comparison

Comparison to jet quenching JEWEL MC event generator General trend of data is described by JEWEL

JEWEL MC, K. Zapp et al, JHEP03 (2013) 080. This calculation: R. Kunnawalkam Elayavalli and K. Zapp in preparation

Summary

New results probing jet quenching enter unexplored territory at $\sqrt{s_{NN}}$ =5.02 TeV :

- High precision measurement (η_{dijet}) to constrain (nuclear) PDFs
- R_{AA} charged particles up to p_T=400 GeV
 → strong suppression which decreases towards higher p_T
- Z-jet events: quark vs color neutral probe
 > smaller energy for recoiling jet
- p_T balance of b-jets
 - → similar to light jets
- First measurement of splitting function in pp and PbPb data
 - → splitting less balanced for jets in hot QCD medium

All these measurements improve our understanding of parton-medium interactions.

Many more to come... stay tuned

backup

Jet shapes and structures Run1

Jet shape observables: energy + multiplicity distributions within a jet Sensitive to the dynamics of parton shower

Small enhancement at large R and small z: 1-2 GeV + ~2 particles + suppression at intermediate R and z

Nuclear PDFs

With pp data at 5 TeV, nuclear PDF can be further constrained

Mapping onto regions of x_{Pb}

Marta Verweij 25

Nuclear PDFs: Q² evolution

Find the jets

Jets are not so easy to find in a heavy-ion collision

Underlying event needs to be subtracted

⇒ same as for PU but now everything comes from the same vertex

Particle-by-particle approach: Constituent Subtraction [1]

[1] Berta et al. arXiv:1403.3108

Splitting function in pp

 $z_{g} = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$

PYTHIA8 and HERWIG reproduce the pp data within 5-10% Opposite trend for PYTHIA and HERWIG

CMS-PAS-HIN-16-006

Splitting function in pp

 $z_{g} = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$

PYTHIA8 and HERWIG reproduce the pp data within 5-10% Opposite trend for PYTHIA and HERWIG

Soft Drop

Anti-k_T jet is re-clustered with Cambridge/Aachen (CA)
Then decluster the angular-ordered CA tree
Drop branches until Soft Drop condition is satisfied

Extract the 2 branches after grooming for physics → subjets

Observable is well understood analytically since all soft divergences are removed

Larkoski, Marzani, Thaler

Phys. Rev. D91:111501 (2015)

Soft Drop: JHEP 1405 (2014) 146

Groomed jet radius determined by dynamics of jet, not from outside

Jet grooming

Jet grooming removes soft divergences and uncorrelated background Common technique in HEP

This analysis is the first one using jet grooming in heavy ion collisions

Marta Verweii

Soft Drop

Soft Drop = Jet grooming technique removes large-angle soft radiation + remaining background

We use β = 0 and z_{cut} = 0.1 All soft emissions are removed Equivalent to modified Mass Drop

[1] Larkoski, Marzani, Thaler Phys. Rev. D91:111501 (2015) Soft Drop: JHEP 1405 (2014) 146

Soft Drop condition

$$z>z_{\mathrm{cut}}\,\theta^{\beta}_{\uparrow}$$
 energy angular exponent

$$z_{\rm g} = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

Momentum fraction carried by the subleading branch of first splitting

Emission phase space

For β =0: both soft and soft-collinear emissions are vetoed

Generalized fraamentation function

Measurement of QCD splitting function

Momentum sharing between two leading subjets:

$$z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}};$$

Independent of $\alpha_{\scriptscriptstyle S}$

Moderate dependence on jet p_T

~ same for quarks and gluons

Sensitive to modification of splitting function

Effect of parton-medium interaction?