Measurements of Higgs boson production and properties in the WW decay channel using the CMS detector

4th August 2016
Andrea Massironi (Northeastern University) on behalf of the CMS collaboration
Higgs production and decay

Production mechanisms
- Gluon fusion is the dominant production mechanism
- VBF, VH and ttH allow to test H properties
- ttH, see M. Peruzzi presentation this afternoon

 http://indico.cern.ch/event/432527/contributions/1072545/

Higgs decay
- **WW** is one of the Higgs decays with larger BR and a reasonable level of irreducible backgrounds

\[m_H = 125 \text{ GeV} \]

Cross Sections
- \(ggH \) 48.58 pb
- \(qqH \) 3.78 pb
- \(WH+ZH \) 2.38 pb
- \(ttH+bbH \) 1.0 pb

2.3/fb collected in 2015

Background composition varies w.r.t. number of jets

- 0 jets: WW, W+jets
- 1 jet: WW, Top
The background menu

- $W \rightarrow l\nu +\text{jets}$:
 - $q \rightarrow W \rightarrow l\nu +\text{jets}$
 - $\sim 61 \text{ nb}$

- $WW \rightarrow l\nu l\nu$:
 - $q \rightarrow W \rightarrow l\nu l\nu$
 - $\sim 12 \text{ pb}$

- $DY \rightarrow ll$:
 - $q \rightarrow Z \rightarrow ll$
 - $\sim 6 \text{ nb}$

- $t\bar{t} \rightarrow WWbb \rightarrow l\nu l\nu bb$:
 - $q \rightarrow t\bar{t} \rightarrow WWbb \rightarrow l\nu l\nu bb$
 - $\sim 87 \text{ pb}$
Analysis strategy

- Neutrinos \rightarrow impossible reconstruct an invariant mass spectrum
- In transverse plane momentum conservation
 - Build a transverse mass variable:
 - 2 neutrinos \rightarrow more complicated than in simple $W \rightarrow l\nu$ decay
 - Di-leptons and MET system considered
 $$ m_T^{\ell\ell} E_T^{\text{miss}} = \sqrt{2 \cdot p_T^{\ell\ell} \cdot E_T^{\text{miss}} \left(1 - \cos \Delta \phi_{\ell\ell}, E_T^{\text{miss}} \right)} $$
 - $\Delta \phi$ (ll,MET) = angle between di-lepton system and MET
 - $p_T^{\ell\ell}$ = momentum of di-lepton system
 - 2D template fit based on $m_{ll}/m_T^{ll\text{MET}}$ as in Run 1
 - 0 jet and 1 jet to have different background contamination
 - $e\mu$ and μe p_T ordered leptons, to exploit different fake rate for electrons and muons

0 jet $H \rightarrow WW$

1 jet $H \rightarrow WW$

- $e\mu$ and μe p_T ordered leptons, to exploit different fake rate for electrons and muons
Tackling backgrounds

Lepton selections:
- 2 opposite charge leptons (|\eta|<2.5 for e, |\eta|<2.4 for \mu) with optimized lepton isolation and identification criteria
- \pT^{leading \ lepton} > 20 GeV and \pT^{2nd \ lepton} > 10 (13) GeV for \mu(e)

WW selections
- Low mass resonances: \mll > 12 GeV
- Kinematic cut: \pT^{ll} > 30 GeV
- Extra lepton veto: 2 leptons only with \pT > 10 GeV

\Emiss selection:
- \Emiss > 20 GeV
- \mll^{MET} > 60 GeV

Jet selections:
- B-veto:
 - b jets identified looking at tracks associated to the jet exploiting lifetime of B mesons and soft muons coming from leptonic b decays (combined MVA)
Lepton selections:
- 2 opposite charge leptons ($|\eta|<2.5$ for e, $|\eta|<2.4$ for μ) with **optimized lepton isolation and identification criteria**
- $p_T^{\text{leading lepton}} > 20$ GeV and $p_T^{\text{2nd lepton}} > 10$ (13) GeV for $\mu(e)$

WW selections
- Low mass resonances: $m_{ll} > 12$ GeV
- Kinematic cut: $p_T^{ll} > 30$ GeV
- Extra lepton veto: 2 leptons only with $p_T > 10$ GeV

E_T^{miss} selection:
- $E_T^{\text{miss}} > 20$ GeV
- $m_T^{ll,\text{MET}} > 60$ GeV

Jet selections:
- B-veto:
 - b jets identified looking at tracks associated to the jet exploiting lifetime of B mesons and soft muons coming from leptonic b decays (combined MVA)

\[W \rightarrow l + jets \quad \sim 61 \text{ nb} \]
W+jets

- Data driven estimation based on **fake-rate** method: probability for a jet to be reconstructed as a lepton

- **Control region** in **same-sign** 2-leptons phase space:

 0 jet

 1 jet

4th August 2016

A. Massironi (Northeastern University) CMS H > WW
Tackling backgrounds

Lepton selections:
- 2 opposite charge leptons ($|\eta|<2.5$ for e, $|\eta|<2.4$ for μ) with optimized lepton isolation and identification criteria
- $p_T^{\text{leading lepton}} > 20$ GeV and $p_T^{\text{2nd lepton}} > 10$ (13) GeV for μ (e)

WW selections
- **Low mass resonances:** $m_{ll} > 12$ GeV
- **Kinematic cut:** $p_T^{ll} > 30$ GeV

Extra lepton veto: 2 leptons only with $p_T > 10$ GeV

E_T^{miss} selection:
- $E_T^{\text{miss}} > 20$ GeV

$m_T^{ll,\text{MET}} > 60$ GeV

Jet selections:
- B-veto:
 - b jets identified looking at tracks associated to the jet exploiting lifetime of B mesons and soft muons coming from leptonic b decays (combined MVA)

$DY \rightarrow ll \sim 6 \text{ nb}$
MC based with **normalization** from control region

- low $m_T^{\|\text{MET}}$ region
- $m_T^{\|\text{MET}} < 60$ GeV

DY $\rightarrow \tau\tau$

![Diagram showing m_T distributions with 0 jet and 1 jet](image)

CMS Preliminary
$L = 2.3/\text{fb} (13 \text{ TeV})$
Tackling backgrounds

Lepton selections:
- 2 opposite charge leptons ($|\eta|<2.5$ for e, $|\eta|<2.4$ for μ) with optimized lepton isolation and identification criteria
- $p_T^{\text{leading lepton}} > 20$ GeV and $p_T^{\text{2nd lepton}} > 10$ (13) GeV for μ (e)
- WW selections
 - Low mass resonances: $m_{ll} > 12$ GeV
 - Kinematic cut: $p_T^{ll} > 30$ GeV
- Extra lepton veto: 2 leptons only with $p_T > 10$ GeV
- E_T^{miss} selection:
 - $E_T^{\text{miss}} > 20$ GeV
- $m_{Tll\text{MET}} > 60$ GeV

Jet selections:
- B-veto:
 - b jets identified looking at tracks associated to the jet exploiting lifetime of B mesons and soft muons coming from leptonic b decays (combined MVA)

Details on b-tag in M. Verzetti’s talk on Saturday morning
http://indico.cern.ch/event/432527/contributions/1072114/

$\bar{t}t \rightarrow WWbb \rightarrow l\nu l\nu bb \sim 87$ pb
Requiring at least a jet identified as a \textbf{b-induced jet}
- 0 jet $p_T > 30$ GeV
- 1 jet $p_T > 30$ GeV

Top shape from MC and \textbf{normalization} from data, measured separately in 0/1 jet category

\begin{align*}
\mathcal{m}_{ll} & \quad \mathcal{m}_{Tll} \quad \text{MET}
\end{align*}
HWW @ 13 TeV results

2D un-rolled distribution based on $m_\ell/m_T^{\mu\mu\text{MET}}$: trains of m_ℓ in $m_T^{\mu\mu\text{MET}}$ windows

- Signal strength
 \[\frac{\sigma}{\sigma_{\text{SM}}} = 0.3 \pm 0.5 \]

- Significance = \(0.7\sigma\) (expected 2.0\sigma)
Recent results @ 7/8 TeV

- Characterization of the new boson
 - Spin tests
 - Anomalous couplings

- Recent results:
 - Higgs width measurement
 - Differential measurement p_T^H
Higgs width

- Measurement of Higgs boson width by looking at the off-shell production
- Simultaneous measurement of on-shell and off-shell Higgs cross section

\[\sigma_{\text{off-peak}}^{H \rightarrow VV} \quad \sigma_{\text{on-peak}}^{gg \rightarrow H \rightarrow VV} = \Gamma_H \]

- WW and ZZ final state: \(\Gamma_H < 13 \text{ MeV} \)

CMS

<table>
<thead>
<tr>
<th>CMS</th>
<th>19.4 fb(^{-1}) (8 TeV) + 4.9 fb(^{-1}) (7 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H \rightarrow WW)</td>
<td></td>
</tr>
<tr>
<td>0-jet (obs)</td>
<td>0-jet (exp)</td>
</tr>
<tr>
<td>1-jet (obs)</td>
<td>1-jet (exp)</td>
</tr>
<tr>
<td>2-jet (obs)</td>
<td>2-jet (exp)</td>
</tr>
<tr>
<td>(H \rightarrow ZZ)</td>
<td></td>
</tr>
<tr>
<td>0+1+2 jet (obs)</td>
<td>0+1+2 jet (exp)</td>
</tr>
<tr>
<td>(H \rightarrow ZZ+WW)</td>
<td></td>
</tr>
</tbody>
</table>

Details on coupling/width in U. Sarica’s talk this afternoon
http://indico.cern.ch/event/432527/contributions/1071465/
Differential measurement of Higgs transverse momentum

- With MET resolution, but still p_T^H good observable

Result unfolded at generation level in fiducial phase space

Inputs: measure the Higgs cross section in windows of p_T^H MET
Results

- **7/8 TeV H → WW** characterization
 - Cross section
 - Different production modes targeted
 - Anomalous couplings
 - Higgs width indirect measurement
 - Differential measurement of Higgs transverse momentum
 - Some measurement still statistically dominated

- **13 TeV** search mode
 - Signal strength $\sigma/\sigma_{\text{SM}} = 0.3 \pm 0.5$
 - More data → characterization at 13 TeV

Stay tuned for new results based on more data at 13 TeV
backup
References

CMS DETECTOR

- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m
- Magnetic field: 3.8 T

STEEL RETURN YOKE
- 12,500 tonnes

SILICON TRACKERS
- Pixel (100x150 μm) ~16m² ~66M channels
- Microstrips (80x180 μm) ~200m² ~9.6M channels

SUPERCONDUCTING SOLENOID
- Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
- Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
- Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
- Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER
- Steel + Quartz fibres ~2,000 Channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL)
- Brass + Plastic scintillator ~7,000 channels
2D shape analysis

- Di-lepton invariant mass: m_{ll}
 \[m_{ll} = \sqrt{2 \cdot p_T^{\ell} \cdot E_T^{miss} \left(1 - \cos \Delta \phi_{\ell \ell, E_T^{miss}}\right)} \]

- Lepton + MET transverse mass:

 - 7 bins in $m_T H$: 60 – 200 GeV [20 GeV width]

 - 5 bins in m_{ll}: 10-110 GeV [20 GeV width]

Unrolled 1D distribution
The complete $H \rightarrow WW$ searches at 7/8 TeV

- ggH 0 jet
- ggH 1 jet
- $H \rightarrow WW$ 2 jet
- VBF $H \rightarrow WW$ 2 jet
- $VH \rightarrow WW$ 2 jet
- $WH H \rightarrow WW$ 3 leptons
- $ZH H \rightarrow WW \rightarrow lvjj$ 3 leptons
- $ttH H \rightarrow WW$ 2 same-sign, 3 leptons, 4 leptons
How significant is the excess at 7/8 TeV?

<table>
<thead>
<tr>
<th></th>
<th>Significance</th>
<th>(\sigma / \sigma_{SM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>combination</td>
<td>4.3(\sigma)</td>
<td>5.8(\sigma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.72 +0.20 -0.18</td>
</tr>
<tr>
<td>e(\mu) alone</td>
<td>4.0(\sigma)</td>
<td>5.2(\sigma)</td>
</tr>
<tr>
<td>0/1 jet</td>
<td></td>
<td>0.76 (\pm) 0.21</td>
</tr>
</tbody>
</table>
Hunting different production mechanisms

H → WW (all channels)
\[\frac{\sigma}{\sigma_{SM}} = 0.72^{+0.20}_{-0.18} \]

2l2ν + 0/1-jet
\[\frac{\sigma}{\sigma_{SM}} = 0.74^{+0.22}_{-0.20} \]

2l2ν + 2-jets, VBF tag
\[\frac{\sigma}{\sigma_{SM}} = 0.60^{+0.57}_{-0.46} \]

2l2ν + 2-jets, VH tag
\[\frac{\sigma}{\sigma_{SM}} = 0.39^{+1.97}_{-1.87} \]

3l3ν, WH tag
\[\frac{\sigma}{\sigma_{SM}} = 0.56^{+1.27}_{-0.95} \]

Best fit for \(\frac{\sigma}{\sigma_{SM}} \)
Signal strength vs Higgs mass

CMS

$\sqrt{s} = 8$ TeV

$\sigma \times BR$ [pb]

M_H [GeV]

$e\mu$ 0/1-jet

σ/σ_{SM}

4.9 fb$^{-1}$ (7 TeV) + 19.4 fb$^{-1}$ (8 TeV)

Observed

68% CL Observed

95% CL Observed
Candidate $H \rightarrow WW \rightarrow \mu\mu\nu\nu$
Cross section

$\sqrt{s} = 8 \text{ TeV}$

$\sigma(pp \rightarrow H+X) [pb]$ vs $M_H [\text{GeV}]$

- $pp \rightarrow H$ (NNLO+NNLL QCD + NLO EW)
- $pp \rightarrow qqH$ (NNLO QCD + NLO EW)
- $pp \rightarrow WH$ (NNLO QCD + NLO EW)
- $pp \rightarrow ZH$ (NNLO QCD + NLO EW)
- $pp \rightarrow t\bar{t}H$ (NLO QCD)
Branching ratio

![Graph showing branching ratios for different decay modes of a Higgs boson. The graph plots the Higgs BR + Total Uncert against the Higgs boson mass (M_H) in GeV. The decay modes include WW, ZZ, bb, γγ, ZZ, and μμ, each with a different line of varying color and style. The x-axis represents the Higgs boson mass, with values ranging from 80 to 200 GeV. The y-axis represents the branching ratio, with values ranging from 10^-4 to 1.]

4th August 2016
A. Massironi (Northeastern University) CMS H > WW

28
Spin testing

CMS H → WW → 2l2ν eμ 0-jet

VS

CMS

2ν_m H → WW → 2l2ν eμ 0-jet

m_ν [GeV]

Events / bin

m_T [GeV]

4.9 fb⁻¹ (7 TeV) + 19.4 fb⁻¹ (8 TeV)

Probability density

WW → 2l2ν + 0/1-jet

0^+

2ν_m^+(f_{qg}=100%)

CMS data

(CL_{obs} = 0.2%)
Spin testing

-2 \times \ln \left(\frac{L_p}{L_{0+}} \right)

<table>
<thead>
<tr>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+ \pm 1\sigma</td>
<td>J^P \pm 1\sigma</td>
</tr>
<tr>
<td>0^+ \pm 2\sigma</td>
<td>J^P \pm 2\sigma</td>
</tr>
<tr>
<td>0^+ \pm 3\sigma</td>
<td>J^P \pm 3\sigma</td>
</tr>
</tbody>
</table>

CMS

X \rightarrow WW

19.4 fb^{-1} (8 TeV) + 4.9 fb^{-1} (7 TeV)

4th August 2016

A. Massironi (Northeastern University) CMS H > WW
Anomalous couplings

\[A(HV_1 V_2) \sim \left[a_1^{V_1 V_2} + \frac{\kappa_1^{V_1 V_2} q_{V_1}^2 + \kappa_2^{V_1 V_2} q_{V_2}^2}{(\Lambda_1^{V_1 V_2})^2} \right] \]

- **\(\Lambda_1 \) term**
 - leading momentum expansion

- **\(a_2 \) term**
 - CP even state

- **\(a_3 \) term**
 - CP odd state

\[f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4 + ...} \]

\[\phi_{a3} = \arg \left(\frac{a_3}{a_1} \right) \]
Anomalous couplings

CMS H \rightarrow WW

4th August 2016
A. Massironi (Northeastern University)
Couplings in k-framework

\[
\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = \begin{cases} \kappa_{g}^{2} & \kappa_{b}, \kappa_{t}, m_{H} \\ \kappa_{g}^{2} & \kappa_{b}, \kappa_{t}, m_{H} \end{cases}
\]

\[
\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}} = \kappa_{W}^{2}
\]

\[
\frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} = \kappa_{Z}^{2}
\]

\[
\frac{\Gamma_{bb}}{\Gamma_{bb}^{SM}} = \kappa_{b}^{2}
\]

\[
\frac{\Gamma_{\tau^{-}\tau^{+}}}{\Gamma_{\tau^{-}\tau^{+}}^{SM}} = \kappa_{\tau}^{2}
\]

\[
\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} = \begin{cases} \kappa_{\gamma}^{2} & \kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H} \\ \kappa_{\gamma}^{2} & \kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H} \end{cases}
\]

\[
\kappa_{H}^{2}(\kappa_{i}, m_{H}) = \sum_{j = WW^{(*)}, ZZ^{(*)}, b\bar{b}, \tau^{-}\tau^{+}, \gamma\gamma, Z\gamma, gg, t\bar{t}, c\bar{c}, s\bar{s}, \mu^{-}\mu^{+}} \frac{\Gamma_{j}(\kappa_{i}, m_{H})}{\Gamma_{H}^{SM}(m_{H})}
\]
Couplings results from HWW

$$\mu_{ggH} \ast \sigma_{ggH} + \mu_{VBF,VH} \ast (\sigma_{VBF} + \sigma_{VH})$$

$$k_V^2 k_f^2 / k_H^2 \ast \sigma_{ggH} + k_V^2 k_f^2 / k_H^2 (\sigma_{VBF} + \sigma_{VH})$$

$$k_H^2 \sim k_f^2$$
Rare channels: $2l + 2$ jets

VH

VBF

![Diagram showing VH and VBF processes with particles and leptons](image)

In the CMS experiment, with an integrated luminosity of 19.4 fb$^{-1}$ at 8 TeV, the mass of the Higgs boson (m_H) is 125 GeV, and the dilepton 2-jets search is performed.
Rare channels: VH and VBF

VH

VBF

Events / bin

Events / bin

CMS preliminary

CMS preliminary

L = 19.5 fb$^{-1}$

L = 19.5 fb$^{-1}$

$\sqrt{s} = 8$ TeV

$\sqrt{s} = 8$ TeV

$M_{H} = 125$

$M_{H} = 125$

$V+\gamma/V+\gamma^*$

$V+\gamma/V+\gamma^*$

$W+\text{jets}$

$W+\text{jets}$

DY+jets

DY+jets

WZ/ZZ

WZ/ZZ

data

data

WW

WW

$\text{VH m}_H = 125$

$\text{VH m}_H = 125$

top

top

$\text{ggH m}_H = 125$

$\text{ggH m}_H = 125$

$\text{V+\gamma/V+\gamma^* VH 2jet}$

$\text{V+\gamma/V+\gamma^* VH 2jet}$

W+jets

W+jets

WW

WW

CMS preliminary

CMS preliminary

$\text{L} = 19.5 \text{ fb}^{-1}$

$\text{L} = 19.5 \text{ fb}^{-1}$

$\sqrt{s} = 8 \text{ TeV}$

$\sqrt{s} = 8 \text{ TeV}$

VBF 2jet

VBF 2jet

4th August 2016

$\text{A. Massironi (Northeastern University) CMS H > WW}$
Rare channels: 3l (+2jet)

WH

ZH

![Diagrams showing WH and ZH processes](image)

Events

- **CMS**
 - Data
 - W_H
 - VH
 - Non-prompt
 - ZZ
 - WZ

- **$m_H = 125$ GeV**
- **3l + 2jet**

![Histograms showing event distribution](image)

- **Events / 0.8**
- **ΔR_{ll}**

- **CMS**
 - Data
 - $10 \times ZH$
 - ZZ
 - WZ + VV

- **$m_{T^{VV}}$ [GeV]**
- **Events / 38 GeV**
p_T^H response matrix

Folding

Unfolding

<table>
<thead>
<tr>
<th>$p_T^{H,\text{gen}}$ [GeV]</th>
<th>$p_T^{H,\text{reco}}$ [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,15]</td>
<td>[0,15]</td>
</tr>
<tr>
<td>[15,45]</td>
<td>[15,45]</td>
</tr>
<tr>
<td>[45,85]</td>
<td>[45,85]</td>
</tr>
<tr>
<td>[85,125]</td>
<td>[85,125]</td>
</tr>
<tr>
<td>[125,165]</td>
<td>[125,165]</td>
</tr>
<tr>
<td>[165,∞]</td>
<td>[165,∞]</td>
</tr>
</tbody>
</table>

- Folding matrix
- Unfolding matrix

4th August 2016

A. Massironi (Northeastern University) CMS H > WW 38
Higgs width distributions

CMS

19.4 fb^{-1} (8 TeV)

Data
SM off-shell 30 x \Gamma_{SM}^{
u}
On-shell
V_{\gamma}^{(*)}
W+jets

WZ+ZZ+VVV
Top
DY+jets
ggWW
WW

Bkg uncertainty

m_H = 125.6 GeV

Data / MC

0
0.5
1
1.5

MVA discriminant

-1
-0.5
0
0.5
1

4th August 2016
A. Massironi (Northeastern University) CMS H > WW
2015 analysis strategy

H → WW
jets

0 jet H → WW

1 jet H → WW

eμ, μe, Top 0 jet, DY 0 jet

eμ, μe, Top 1 jet, DY 1 jet

- Signal phase space
- Phase space to normalize the backgrounds