Search for Higgs bosons produced in association with top quarks in the CMS detector

Marco Peruzzi (CERN) on behalf of the CMS Collaboration

38th International Conference on High Energy Physics Chicago (U.S.A.), August 4th, 2016
Introduction

- Probing the **ttH coupling** at LHC:
 - via gluon fusion cross section, assuming no BSM particles running in the loop
 - **directly at tree level,** via associated production

- σ for $ttH \sim 510 \text{ fb}$ at 13 TeV
- BR to $bb \sim 60\%$, $WW^* \sim 20\%$, smaller for other final states
- **Challenging due to the presence of additional jets and leptons from top decay**
Searches for ttH at CMS

- **tt + b-jets**, targeting Higgs decay to bb
 - high cross section x BR, but complex multi-jet final state
 - reduce tt+jets using kinematic variables and MEM (details in C. Palmer’s talk)

- **tt + leptons**, targeting Higgs decays to WW*, ZZ*, ττ
 - lower rate, low background multi-lepton final state

- **tt + γγ**, targeting Higgs decay to γγ
 - small branching ratio, but very clean final state (small systematic uncertainty)
Results with 2015 data

- Higgs to bb
 \[\hat{\mu}_{\text{obs}} = -2.0^{+1.8}_{-1.8} \]

- Higgs to $\gamma\gamma$
 \[\hat{\mu}_{\text{obs}} = 3.8^{+4.5}_{-3.6} \]

- Multi-lepton
 \[\hat{\mu}_{\text{obs}} = 0.6^{+1.4}_{-1.1} \]

CMS PAS HIG-16-004
CMS PAS HIG-15-005
CMS PAS HIG-15-008

Search for Higgs bosons produced in association with top quarks in the CMS detector
Results with 2015 data

- Result of the combination of ttH searches with 2015 data: compatible with the SM
- Sensitivity is about 1 x SM

Search for Higgs bosons produced in association with top quarks in the CMS detector
Updates with 2016 data

- **ttH, Higgs to $\gamma\gamma$** (details in V. Tavolaro’s talk):
 - tagged $H \rightarrow \gamma\gamma$ categories selecting hadronic and leptonic top decays

- **New ttH multi-lepton result**, presented in the following

Search for Higgs bosons produced in association with top quarks in the CMS detector
ttH in multi-lepton final states

- Target multi-lepton final states from Higgs decays to WW^*, ZZ^*, $\tau\tau$
- Channels:
 - two same-sign leptons + 4 jets
 - at least three leptons (with Z veto) + 2 jets
- At least 2 loose or 1 medium b-tagged jets

Search for Higgs bosons produced in association with top quarks in the CMS detector
Event yields

<table>
<thead>
<tr>
<th></th>
<th>$\mu\mu$</th>
<th>ee</th>
<th>$e\mu$</th>
<th>3ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}W$</td>
<td>18.3 ± 0.9</td>
<td>6.8 ± 0.6</td>
<td>24.5 ± 1.1</td>
<td>12.2 ± 0.7</td>
</tr>
<tr>
<td>$t\bar{t}Z/\gamma^*$</td>
<td>5.8 ± 0.6</td>
<td>7.4 ± 0.6</td>
<td>15.3 ± 1.3</td>
<td>22.6 ± 1.0</td>
</tr>
<tr>
<td>Di-boson</td>
<td>1.4 ± 0.2</td>
<td>1.1 ± 0.2</td>
<td>2.6 ± 0.3</td>
<td>5.7 ± 0.4</td>
</tr>
<tr>
<td>ttt</td>
<td>0.8 ± 0.2</td>
<td>0.4 ± 0.1</td>
<td>1.5 ± 0.2</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>tqZ</td>
<td>0.2 ± 0.3</td>
<td>0.4 ± 0.4</td>
<td>0.6 ± 0.6</td>
<td>2.7 ± 0.8</td>
</tr>
<tr>
<td>Rare SM bkg.</td>
<td>1.6 ± 0.3</td>
<td>0.5 ± 0.1</td>
<td>1.8 ± 0.1</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>Charge mis-meas.</td>
<td>6.7 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-prompt leptons</td>
<td>33.4 ± 1.2</td>
<td>23.1 ± 1.1</td>
<td>61.9 ± 1.7</td>
<td>51.0 ± 1.8</td>
</tr>
<tr>
<td>All backgrounds</td>
<td>61.5 ± 1.7</td>
<td>46.4 ± 1.5</td>
<td>118.0 ± 2.5</td>
<td>95.7 ± 2.3</td>
</tr>
<tr>
<td>$t\bar{t}H$ ($H \rightarrow WW^*$)</td>
<td>6.3 ± 0.2</td>
<td>2.6 ± 0.1</td>
<td>8.5 ± 0.2</td>
<td>8.0 ± 0.2</td>
</tr>
<tr>
<td>$t\bar{t}H$ ($H \rightarrow \tau\tau$)</td>
<td>1.6 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>2.5 ± 0.1</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>$t\bar{t}H$ ($H \rightarrow ZZ^*$)</td>
<td>0.2 ± 0.0</td>
<td>0.1 ± 0.0</td>
<td>0.3 ± 0.0</td>
<td>0.5 ± 0.0</td>
</tr>
<tr>
<td>Data</td>
<td>74</td>
<td>45</td>
<td>154</td>
<td>105</td>
</tr>
</tbody>
</table>

12.9 fb$^{-1}$, stat. unc. only

- Main sources of background:
 - **irreducible**: ttV (from MC), di-boson (validated in data)
 - **reducible**: non-prompt leptons in tt events and charge mis-ID, data-driven
Lepton selection

- Goal: **reject non-prompt leptons** (mainly from b-jets in tt, but also mis-identified light jets and decay-in-flight)
- **Multivariate discriminant based on isolation, vertex and identification lepton observables**
- Performance validated in data control regions
- **Data-driven** estimate of residual background using a **tight-to-loose method**

Search for Higgs bosons produced in association with top quarks in the CMS detector
Kinematic discrimination

- Using **kinematic observables to improve discrimination against tt and ttV events:** jet multiplicity, lepton/jet angular separation, MET, lepton p_T
- New for 2016 analysis **in 3l:** **matrix element weights for ttH and ttV hypotheses**

\[
W_{i,a}(\Phi') = \frac{1}{\sigma_a} \int d\Phi_a \cdot \delta^4 \left(p_1^\mu + p_2^\mu - \sum_{k \geq 2} p_k^\mu \right) \cdot f(x_1, \mu_F) f(x_2, \mu_F) \cdot \frac{1}{x_1 x_2 s} \cdot |M_a(p_k^\mu)|^2 \cdot W(\Phi' | \Phi_a)
\]

- Separate **BDT discriminators** against tt and ttV:

Search for Higgs bosons produced in association with top quarks in the CMS detector
The signal is extracted via a 2-dimensional fit to the BDT discriminators:
Event categorization

- **Post-fit yields** in each category:
- **Main systematic uncertainties:**
 - lepton selection efficiency
 - fake rate measurement for background estimate

Further categorization based on lepton flavor, presence of b-jets, hadronically-decaying τ, lepton charge.

Search for Higgs bosons produced in association with top quarks in the CMS detector
Results

- Results with **2016 dataset** and from the **combination with the ttH multi-lepton 2015 result**:

<table>
<thead>
<tr>
<th>Category</th>
<th>Obs. limit</th>
<th>Exp. limit ±1σ</th>
<th>Best fit μ ±1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same-sign dileptons</td>
<td>4.6</td>
<td>1.7+0.9−0.5</td>
<td>2.7+1.1−1.0</td>
</tr>
<tr>
<td>Trileptons</td>
<td>3.7</td>
<td>2.3+1.2−0.7</td>
<td>1.3+1.2−1.0</td>
</tr>
<tr>
<td>Combined categories</td>
<td>3.9</td>
<td>1.4+0.7−0.4</td>
<td>2.3+0.9−0.8</td>
</tr>
<tr>
<td>Combined with 2015 data</td>
<td>3.4</td>
<td>1.3+0.6−0.4</td>
<td>2.0+0.8−0.7</td>
</tr>
</tbody>
</table>
Outlook

• We have presented studies of associate production of the Higgs boson and top quarks with the CMS experiment

• **Probing the Higgs coupling** with the top quark at tree level

• **Challenging final states** with jets and leptons from top decay

• **Advanced methods** are used to improve the signal purity and discriminate it from tt+jets and ttV background processes

• Combination of 2015 results is in agreement with the SM expectation

• Updated results:

 • **ttH multi-lepton:** $\mu = 2.0 \pm^{0.8}_0.7$ (2015 + 2016 combination)

 • **ttH, $H \rightarrow \gamma\gamma$:** $\mu = 1.9^{+1.5}_{-1.2}$ (2016 dataset)

 Further discussion in E. Ntomari’s poster later this week.