



# Recent Results and Status of EXO-200 and the nEXO Experiment

Caio Licciardi

Carleton University

for the EXO-200 and nEXO Collaborations







# **Enriched Xenon Observatory (EXO)**

- Experimental program searching for neutrinoless double-beta decay  $(0\nu\beta\beta)$ 
  - Current: EXO-200 Experiment
  - Next: nEXO Experiment
- Searching for  $0\nu\beta\beta$  mode ( $Q_{\beta\beta} = 2458 \text{ keV}$ ):  $^{136}\text{Xe} \rightarrow ^{136}\text{Ba}^{++} + 2\text{e}^{-}$



- Filled with liquid Xenon (LXe)
- Constructed from radio-pure materials



- Two measurements of the energy deposited in event
  - Scintillation light (178 nm)
  - Ionization electrons
- 3D position reconstruction
  - Third coordinate from time difference between scintillation and ionization signals

### The EXO-200 TPC



- $\sim$ 150 kg LXe, enriched to 80.6% in  $^{136}$ Xe
- High-voltage applied between cathode (center) and anodes (opposite ends)
- Scintillation collected by 234 large avalanche photo-diodes (APDs, in groups of 7) at interaction time
- Charge collected by 2 wire grids located on rotated planes after cloud drift
  - 38 U triplet wire channels: collection
  - 38 V triplet wire channels: induction

### **Detector Energy Resolution**



- EXO-200 has achieved **σ/E** ~ 1.25% energy resolution at the Q value
- nEXO will reach resolution < 1%, sufficient to suppress background from  $2v\beta\beta$

- LXe scintillation light anti-correlates with ionization charge
- Anticorrelation allows a better energy resolution



#### **Position Discrimination**

- Most gammas (backgrounds) deposit energy at multiple locations (multi-site, MS), while ββ's deposit energy at a single location (single-site, SS)
- Channel pitch is 9 mm in X/Y, while Z resolution is ~6 mm from timing

#### Energy spectrum, <sup>228</sup>Th calibration data:





#### Single-site fraction, <sup>228</sup>Th calibration data:



# Precision 2vββ Measurement (2013)

Longest and most precisely measured  $2\nu\beta\beta$  half life of any isotope to date

$$T_{1/2}^{2v\beta\beta} = 2.165 \pm 0.016 \pm 0.059 \times 10^{21} \text{ yr}$$
(stat) (syst)
[Phys. Rev. C 89 (2014) 015502]

#### Measurements of $T_{1/2}^{2\nu\beta\beta}$ for <sup>136</sup>Xe:



#### Single-site energy spectrum and fit:



| Efficiency $(2v\beta\beta)$ | 57.88% |
|-----------------------------|--------|
| Systematic Uncertainty      | 2.83%  |
| Partial Reconstruction      | 1.6%   |
| Fiducial Volume             | 1.8%   |

# Ovββ Search (2014)



Background in the  $0\nu$  ROI:  $(1.7\pm0.2)\cdot\text{keV}^{-1}$  ton<sup>-1</sup> yr<sup>-1</sup>

| Sensitivity: 1.9·10 <sup>25</sup> yr                                         |  |  |
|------------------------------------------------------------------------------|--|--|
| $T_{1/2}^{0\nu\beta\beta} > 1.1 \cdot 10^{25} \text{ yr (90\%CL)}$           |  |  |
| [Nature 510, 229 (2014)]                                                     |  |  |
| $\langle m_{\beta\beta} \rangle < 190 - 450 \mathrm{meV} (90\% \mathrm{CL})$ |  |  |

| Backgrounds in ± 2σ<br>ROI |            |  |
|----------------------------|------------|--|
| Th-228 chain               | 16.0       |  |
| U-232 chain                | 8.1        |  |
| Xe-137                     | 7.0        |  |
| Total                      | 31.1 ± 3.8 |  |

# Other Double-beta Decay Results

Majoron-mediated Decays

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + \chi_0 \\ (A,Z) \rightarrow (A,Z+2) + 2e^- + 2\chi_0 \\ + 2\chi_0 \\ + \chi_0$$
 Massless or light boson ("Majoron")

- No significant evidence is found
- Limits on coupling constants among strongest to date
- PRD 90, 092004 (2014)



- 2νββ Decay to the 0<sub>1</sub><sup>+</sup> Excited
   State of <sup>136</sup>Ba
  - Machine learning discriminator
  - $T_{1/2}^{2\nu}(0^+ \rightarrow 0_1^+) > 6.9 \cdot 10^{23} \text{ yr } (90\% \text{CL})$
  - PRC 93, 035501 (2016)



#### **Recent Publications**

Many other recent publications by the EXO-200 Collaboration

- Investigation of Radioactivity-induced Backgrounds in EXO-200
  - PRC 92, 015503 (2015)
- Measurements of the Ion Fraction and Mobility of Alpha and Beta Decay Products in Liquid Xenon Using EXO-200
  - PRC 92, 045504 (2015)
- First Search for Lorentz and CPT Violation in Double-beta Decay with EXO-200
  - PRD 93, 072001 (2016)
- Cosmogenic Backgrounds to  $0\nu\beta\beta$  in EXO-200
  - JCAP, April 2016
- An Optimal Energy Estimator to Reduce Correlated Noise for the EXO-200 Light Readout
  - JINST, Vol. 11, July 2016

And others soon to be published ...

### Recovery from Underground Incidents

#### WIPP Events:

- 5 Feb. 2014
  - Fire in WIPP underground
- 14 Feb. 2014
  - Unrelated airborne radiological event

#### • Recovery:

- 18 Feb 2014, remote recovery of enriched xenon
- Sept. 2014 June 2015, drift and clean room cleanup and TPC health diagnostics (no measureable radioactive contamination inside or outside the cleanrooms.
- June Oct. 2015, equipment repair and Infrastructure maintenance

#### • Phase-II Restart:

- Oct. 2015 Jan. 2016, system cooldown, gas purification and liquid xenon filling
- Feb. April 2016, detector upgrades (electronics and derandonator)
- April 2016, Phase-II Physics data taking begins



DOE Accident Inv. Rep., Mar 2014

### EXO-200 Phase-II Operation

- EXO-200 Phase-II operation begins on 1/31/2016, after enriched liquid xenon fill
- Data shows that the detector reached excellent xenon purity and ultra-low internal Rn level shortly after restart



Xenon purity since Jan. 31, 2016



Rn level in TPC since Jan. 31, 2016

### **Upgrade Performance (Deradonator)**

Air gap (need low Rn)



EXO-200 Clean Room Module 1



Deradonator can deliver 0.85 m<sup>3</sup>/min of low Rn air

• Measurements show that the Rn level in the air gap has been reduced by a factor  $\sim 10$ , sufficient to suppress this background for  $0\nu\beta\beta$  search.

### **Analysis Improvements**



Tagging neutron capture events using both veto panel and prompt gamma information can suppress <sup>137</sup>Xe

Many other analysis techniques under study:

#### Improved SS/MS discriminators



Discriminating gamma/beta events using the pulse rise time can suppress U and Th backgrounds

- Enhance energy resolution through corrections of spatial and temporal non-uniformity
- Reduce systematics through detector simulation and calibration
- Implement continuous multiplicity metrics to improve event classification
- Develop multivariate discriminators and other machine learning algorithms

# Sensitivity to 0νββ



- EXO-200 can reach  $0\nu\beta\beta$  halflife sensitivity of  $5.7\times10^{25}$  yrs
- With lower threshold, EXO-200 can improve measurement of  $^{136}$ Xe  $2\nu\beta\beta$  and searches in other physics channels

EXO-200: Nature (2014), doi:10.1038/nature13432

GERDA Phase 2: Public released result. June, 2016 (frequentist limit)

KamLAND-Zen: arXiv:1605.02889 (2016)

### Next Generation Experiment: nEXO

 EXO-200 has surpassed design energy resolution and SS/MS rejection capability, and is expected to suppassed the design background goals

- nEXO design:
  - ~ 5 tonne LXeTPC
  - 4.7 tonnes of active enrXe (90% or higher)
  - < 1.0% ( $\sigma/E$ ) energy resolution
  - cover inverted hierarchy
  - options for Ba-tagging

Poster 1364 on nEXO by **J. Albert**The Next-generation Neutrinoless
Double-beta Decay Experiment nEXO
Saturday, August 6<sup>th</sup> (tomorrow)

EXO-200 Detector





# nEXO Sensitivity to Ονββ



nEXO sensitivity as a function of time for the best-case nuclear matrix element (GCM).

# Tagging the Daughter Ba

- 136Xe offers a unique possibility of the daughter identification
  - In this scenario, the only backgrounds arise from  $2\nu\beta\beta$
- While LXeTPCs provide many handles to discriminate backgrounds, energy resolution is the only handle to discriminate  $2\nu\beta\beta$  background
  - Future very large scale detectors should have sufficient energy resolution to suppress the  $2\nu\beta\beta$  mode



The  $2\nu\beta\beta$  background is smallest for  $^{136}$ Xe, as it has the longest  $2\nu\beta\beta$  half-life.

# Summary







University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang

University of Bern, Switzerland — J-L Vuilleumier

University of California, Irvine, Irvine CA, USA — M Moe

California Institute of Technology, Pasadena CA, USA — P Vogel

Carleton University, Ottawa ON, Canada — M Dunford, R Gornea, K Graham, R Killick, T Koffas, C Licciardi, D Sinclair

Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr., T Walton

Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen

Duke University, Durham NC, USA — PS Barbeau

Friedrich-Alexander-University Erlangen, Nuremberg, Germany — G. Anton, R. Bayerlein,

J. Hoessl, P. Hufschmidt, A. Jamil, T. Michel, M. Wagenpfeil, G. Wrede, T. Ziegler

IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard

IHEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao

ITEP Moscow, Russia — V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich

University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang

Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, J Zettlemoyer

Laurentian University, Sudbury ON, Canada — B Cleveland, A DerMesrobian-Kabakian, J Farine, U Wichoski

University of Maryland, College Park MD, USA — C Hall

University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, J King, A Pocar

McGill University, Montreal QC, Canada — T Brunner, K Murray

SLAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels,

J Davis, , S Delaquis R Herbst, A Johnson, M Kwiatkowski, B Mong, A Odian,

CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen

University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan

Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell,

S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber

Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka

Technical University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino

TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, Y Lan, F Retière, V Strickland









University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang

University of Bern, Switzerland — J-L Vuilleumier

Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu

California Institute of Technology, Pasadena CA, USA — P Vogel

Carleton University, Ottawa ON, Canada — I Badhrees, Y Baribeau, M Bowcock, M Dunford, M Facina,

R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair

Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, T Walton

Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen

Duke University, Durham NC, USA — PS Barbeau, G Swift

University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler

IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard

IHEP Beijing, People's Republic of China — G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao

ITEP Moscow, Russia — V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich

University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang

Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemoyer

University of California, Irvine, Irvine CA, USA — M Moe

Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, U Wichoski

Lawrence Livermore National Laboratory, Livermore CA, USA — O Alford, J Brodsky,

M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio

University of Massachusetts, Amherst MA, USA —S Feyzbakhsh, S Johnston, M Negus, A Pocar

McGill University, Montreal QC, Canada — T Brunner, K Murray

Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, D Hornback, RJ Newby, K Ziock

Pacific Northwest National Laboratory, Richland, WA, USA — EW Hoppe, JL Orrell

Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, K Odgers

SLAC National Accelerator Laboratory, Menlo Park CA, USA — J Dalmasson, T Daniels, S Delaquis,

G Haller, R Herbst, M Kwiatkowski, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas

University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan

Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz,

D Moore, I Ostrovskiy, A Schubert, M Weber

Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka

Technical University of Munich, Garching, Germany — P Fierlinger, M Marino

TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, Y Lan, F Retière, V Strickland





# Thank You – Questions?











Poster by **J. Albert**The Next-generation
Neutrinoless Double-beta
Decay Experiment nEXO
Saturday, August 6<sup>th</sup>





| LXe mass (kg) | Diam. or length (cm) |
|---------------|----------------------|
| 5000          | 130                  |
| 150           | 40                   |
| 5             | 13                   |



length 8.5 cm = -

Monolithic detector is essential for background rejection:

- Rejection of surface background
- Self-shielding, containment of Compton scattering
- Inner fiducial volume extremely clean

#### **Motivations**

- Physics (observation of  $0\nu\beta\beta$  mode would provide):
  - Majorana nature of the neutrinos
  - Neutrino mass scale
  - A lepton number violating process
  - Beyond the Standard Model physics



- Easier enrichment (noble gas)
- Reusable: can be purified and recycled
- Self-shielding: reduces effect of surface contamination
- Minimal cosmogenic activation: no long-lived radioactive isotopes
- Good energy resolution:  $\sim 1\%$  at Q-value by using the anticorrelation between scintillation light and ionization charge
- Identification of daughter nucleus: identification of Ba daughter would eliminate all non-  $\beta\beta$  backgrounds (on-going research)





Further improvements in detector energy resolution may be possible with better signal reconstruction and detector non-uniformity corrections.

# **Event Topology**



#### Deradonator and Electronics Upgrade

- Designed and built at UMass
- "Vacuum-swing adsorption" (VSA) Rn filter for air.
- Air forced through activated charcoal to filter Rn at atmospheric pressure, then regenerated by purge at vacuum
- Dual charcoal columns allow continuous operation at 10-30cfm.
- Installation at WIPP nearly complete!
- Electronics upgrade later this year



Deradonator at WIPP



#### **Xenon Purity**

- Continuously recirculate Xe through SAES high temperature purifiers using a custom designed magnetic piston pump. [Neilson et al. (2011) arXiv:1104.5041v1].
- Average electron lifetime for  $0 v\beta\beta$  data set was ~ 3 ms with maximum drift time of 110 us.
- Power outages and other events occasionally require a small fraction of the Xe to be removed from and replaced into the detector, resulting in ~few day recovery times





#### Source Calibration

- Use 4 gamma sources, spanning the energy range 662 2615 keV (<sup>60</sup>Co, <sup>137</sup>Cs, <sup>226</sup>Ra, and <sup>228</sup>Th)
- Calibrate 2-3 times a week using <sup>228</sup>Th source at the S5 position
- Every few months, calibrate with additional sources

| Source              | Activity (Bq) | Half-life (years) |
|---------------------|---------------|-------------------|
| <sup>60</sup> Co    | $530\pm6$     | 5.27              |
| $^{137}\mathrm{Cs}$ | $2820 \pm 33$ | 30.1              |
| $^{228}\mathrm{Th}$ | $1417\pm17$   | 1.91              |

Relative resolution ( $\sigma/E$ ) vs. energy





Residual between reconstructed and true energy



# Source Agreement





#### Source rate agreement:

| Source location | Source type                            | Absolute rate agreement<br>(Data – (MC Sim))/Data<br>[%] |
|-----------------|----------------------------------------|----------------------------------------------------------|
| S2 (anode)      | $^{228}{ m Th}$ $^{60}{ m Co}$         | $3.5^{+0.8}_{-1.3} \ 2.4^{+0.4}_{-1.6}$                  |
| S5 (cathode)    | $^{228}\mathrm{Th}$ $^{60}\mathrm{Co}$ | $1.1_{-0.9}^{+1.0} \\ -3.7_{-1.2}^{+1.5}$                |
| S8 (anode)      | $^{228}{ m Th}$ $^{60}{ m Co}$         | $\substack{-3.2^{+0.8}_{-0.9}\\1.8^{+0.8}_{-1.1}}$       |
| S11 (cathode)   | $^{228}\mathrm{Th}$ $^{60}\mathrm{Co}$ | $3.1^{+2.3}_{-2.7}$ $1.3^{+3.1}_{-4.0}$                  |

- Excellent spectral shape agreement between data and MC for calibration with external Th and Co sources
- Absolute rate agreement with known source activities better than ~4%

### 2vββ systematics

| Component            | Error [%] |
|----------------------|-----------|
| Normalization errors | 2.60      |
| Single-site fraction | 0.77      |
| Backgrounds          | 1.3       |
| Statistical          | 0.76      |
| Total                | 2.83      |

- Overall systematics reduced by factor of  $\sim 3.5$  relative to  $2\nu\beta\beta$  discover (2011)
- Systematics dominated by normalization (signal efficiency) errors
- Relative error on fiducial volume of 1.77% (volume reduced to central 66.2 kg <sup>136</sup>Xe)
- Error on signal reconstruction efficiency of 1.6%

| Normalization errors        | Error [%] |
|-----------------------------|-----------|
| Failed event reconstruction | <0.18     |
| Shape distortion            | 0.33      |
| Missing U-wire channel      | <0.1      |
| Beta-scale                  | 0.24      |
| Background model            | 0.25      |
| Xe parameters               | 0.26      |
| Event selection             | 2.53      |

| Event cut type           | Signal efficiency [%] | Error [%]  |
|--------------------------|-----------------------|------------|
| Solicited triggers       | 99.99                 | -          |
| Noise                    | 100.0                 | < 0.06     |
| 1 s coincidence          | 93.1                  | 0.2        |
| > 1 scintillation signal | 100.0                 | +0.07/-0.0 |
| Partial reconstruction   | 93.9                  | 1.6        |
| Fiducial volume          | -                     | 1.77       |
| Light-to-charge ratio    | 100                   | 0.15       |
| Energy > 700 keV         | -                     | 0.4        |

### Low Background Spectrum

- ROI defined in rotated energy plane
- Diagonal cut in 2D plane removes higher light yield α's





#### **EXO-200 Location**



- Detector installed at WIPP facility near Carlsbad, NM (~1600 mwe)
- Salt mine with relatively low levels of U/Th and Rn
- TPC additionally surrounded by active and passive shielding



#### **Detector schematic:**



#### **Detector Calibration**

- Calibration performed with <sup>60</sup>Co, <sup>137</sup>Cs, <sup>226</sup>Ra, and <sup>228</sup>Th
- Calibration sources are deployed through a guide tube





- Weekly calibration data taking provides:
  - Xenon purity
  - Energy scale and resolution
- Dedicated charge injection runs to measure channel gains