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Leading limits published Generation-2
on low mass WIMPs experiment,
‘ beginning ~2019
: Aiming for unique
sensitivity to low
mass WIMPs
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Ionization yield

iZIPs: lonization & Phonon

Detectors
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3-D fiducialization in both ionization and

F R PO phonon energies allows for efficient rejection of

external backgrounds down to very low
energies

Recoil Energy (keV)

Simultaneous measurement of ionization

APL 103, 164105(2013)

and phonons provides better than 1:10°

separation between NR and bulk ER

Operated at low bias (4V) to extract

recoil energies on event-by-event basis
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First iIZIP results from SuperCDMS Soudan

Results from 7 iZIPs with lowest trigger thresholds (577 kg-days), using full power of
background rejection from iZIPs, sets strong constraints on light WIMPs in 2014
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Eleven events observed:
treating all as candidates

set competitive constraints
below 10 GeV/c? at the
time of publication

See A. Robinson’s
parallel talk for
details



(Ultra) Low lonization Threshold
Experiment: CDMSlite (a.k.a. HV)

Neganov-Luke amplification of phonon response allows operation at very low
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lonization and phonon measurements are redundant in this mode; trading-off

background rejection for lower thresholds
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CDMSIlite Results from Soudan

First Run (2013): single
detector, <1 keV
nuclear recoil threshold
demonstrates operation
and set world-leading
limits with 10 days of
data!

Second run (2015):
improved trigger
threshold+ radial
fiducialization + longer
exposure time

See A. Robinson’s
parallel talk for
details

10~42

Trig thresh < 75 eVee trig
70V bias, 70 kg-days
First radial fiducialization
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SuperCDMS SNOLAB Projections

iZIPs provide nearly background-free sensitivity down to a few
GeV; will be EXPOSURE limited above 10 GeV/c?
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SuperCDMS SNOLAB Projections
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w/ CDMSlite (HV) style detectors with
ultra-low (< 100 eV) threshold; will be

BACKGROUND limited ICHEP, August 2016



Improvements for SNOLAB

10X(4X) better resolution in phonon Tower drawing
channels for CDMSlite(iZIP) detectors; =
thresholds as low as ~50 eV, allow for

much better sensitivity to light particles

Much Cleaner: reduces intrinsic sources
of radioactive background by screening for
levels demonstrated in published literature

Deeper: at 2 km, SNOLAB is 2X deeper
than Soudan and has 100X lower muon flux

Bigger detectors: reduce surface events,
lower fabrication costs; provides path to
scale-up if WIMPs seen at high mass

Silicon provides better sensitivity to light WIMPs (light target) and can cross check
CDMS Il Si result; Ge improves sensitivity where Si detectors are background
limited and provides complementary target information

ICHEP, August 2016 10



SNOLAB Experiment Layout

6-layer ultra-pure

copper cryostat
Outer Water/Poly Shielding Lead Shielding ier Poly, Shielding E-tank
S . has room for up to ¥ -
- N \ 31 SuperCDMS  .* ; _
Dilution \.\ " towers e ; E-tank_prowdes
Refrigerator A . : sptem ! vacuum interface to

"\ ! warm electronics
Aiming for
base temp
15-30mK
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Multi-ton, nearly hermetic Tower assembly supports cold
layers of H,O, lead and electronics and detector stack,

polyethylene block gammas coupled to cryostat layers
and neutrons ICHEP, August 2016 1



Most Prevalent Backgrounds

Expected WIMP scattering rate is <107 times lower
than radioactivity of common materials

ELECTRON RECOILS (ER)

Gamma: most prevalent environmental EN
background . /* U | Photonsand

> +/ [ electrons scatter
Beta: common “surface events” but also prevalent - en the?eactt?cr)?]'g
in detector bulk from cosmogenic activation

WIMPs and neutrons | NUCLEAR RECOILS (NR)

scatter from the
atomic nucleus

Neutron: rare but single-scatters NOT
distinguishable from a WIMP signal

Alphas and Pb recoils
(both mostly products of radon)

ICHEP, August 2016 12



Background Control Critical

 Gamma background ~200x lower than Soudan via more exhaustive material screening
 Reduced beta’s, alphas and Pb recoils originating in copper detector housing by

tracking Rn exposure (detectors ok already!)

* HV detector background dominated by cosmogenics! 3H by spallation in both Ge and

Si detectors, also 3?Si in Si detectors from atmospheric Ar

Ge HV expected background spectrum at Vi, = 100V, ot =50 eV
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See poster by D. Barker on
modeling background at low
energy for SuperCDMS 13




Phonon Resolution is Critical

SNOLAB will achieve markedly improved phonon resolution

(and hence threshold) by reducing the critical temperature of the TES sensors
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SuperCDMS/EURECA

Cryostat will be sized to hold much more than initial G2 payload; offers prime real-
estate in the sub-40 mK, ultra-low radioactive background, ultra-low noise zone!

* Active development in adapting
SuperCDMS cryogenics, towers and
readout to EURECA specifications

—

v
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* EURECA: next-generation
“cryogenic” dark matter
experiment; joint collaboration
between present-day EDELWEISS
(Ge) and CRESST (CawO,).

* Positioned to expand payload to
explore high mass WIMPs if a
signal is seen, OR upgrade with
improved detectors to reach

neutrino floor in 1-10 GeV/c?
CaWO, crystals region.

'f
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SuperCDMS Rough Timeline

I 2012-2014: Ongoing R&D

July 2014: Selected as a next-generation
dark matter experiment by DOE & NSF (!)

Fall 2015: cD-1

We are Fall 2015: End of Soudan Operations

here 2016-2017: Design, work towards DOE CD-3

2018-19: Construction

v

2020: commissioning and first science running

Beyond 2024: Upgrade to multi-100 kg or merge with
EURECA

<€

ICHEP, August 2016
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Summary

Using two styles of detectors, SuperCDMS SNOLAB will have
unique sensitivity to WIMPs with mass < 10 GeV/c?

SuperCDMS Soudan demonstrated potential to detect low mass
WIMPs, with several recent publications on iZIP and CDMSlite

Background control and improved phonon resolution will be key
to SuperCDMS SNOLAB sensitivities

SuperCDMS SNOLAB selected by DOE and NSF for Generation 2 dark
matter program; will have sensitivity many orders of magnitude
better than present-day experiments — stay tuned!

Thank Youl!

ICHEP, August 2016 17
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R&D Towards the Neutrino Floor

Background reduction will be key to extending reach down to the neutrino floor
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SuperCDMS SNOLAB Backgrounds Budget

Cosmogenic backgrounds dominate the background budget for
the HV detectors

Rates /kg keV yr Ge HV Si HV
Cosmogenic* Activation 20 325
Radiogenic Contamination 4.1 17
Environmental Radiation <0.18 <0.75
Coherent Neutrino Interactions 0.35 0.33
Other NR backgrounds <0.01 <0.01
Bulk Total 25 343
Surface Activity before fiducial cuts ~20 ~A4()

Preliminary background budget for the SuperCDMS SNOLAB HV detectors.

ICHEP, August 2016 20



Review of recoil energy calculation

In SuperCDMS detectors, recoil energy is measured from total
phonon energy after correcting for Neganov-Luke phonons:

E ~4V for iZIP
E _ total ~70V for CDMSlite
recoil — 1+Y *
jonization “energy for e/h

pair =3 eVin Ge

Accurate recoil energy measurement requires knowledge
of ionization yield (quenching factor) for given recoil type

Y

ionization Eion/ Erecoil

Yionization 1S Measured directly with iZIPs on an event-by-event basis during
exposure to gamma and neutron sources. But this is not the case for HV
detectors. Y. must be determined independently in order to extract E

ionization recoil

ICHEP, August 2016 21
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Example 1: effects of ionization
vield cutoff

Conservative resolution case: g,, = 50(25) eV for Ge (Si), HV = 50V
Hardware threshold assumed to be 7*c,, = 350(175)eV
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i H

=

=
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Here, ionization threshold makes a large difference in sensitivity for HV detectors. The difference arises from
hardware threshold being below (optimistic case) versus above (worst case) the ionization threshold and
hence where Luke phonons exist to amplify the NR signal.

ICHEP, August 2016 23



Example 2: effects of ionization
vield cutoff

SuperCDMS goal resolution case: 0,, = 10(5) eV for Ge (Si), HV = 100 V
Hardware threshold assumed to be 7*c,, = 50(35) eV

SuperCDMS Soudan

. —v Floor :
10 —Ge iZIP E0=4U eV i
se o —Sl12IP E_=40 eV
= ‘ = Q . :
it | GeHVE =40eV | Optvr;;;st;c C”;C’ﬁ o
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0 Iy .
5 | ~==—-SLI2IP E,ST00 8 | Worst case: cutoff is
-SRI A . LA GoHVE =2540V| ]_ zero below lowest
B : Nl SiHVE_=700eV | ot
é, R o Q vl energy of existing
o ; measurements
10 T S T T
=
® -45
10
~46 . . L . . ; . i ; i i
° 3 / / 0 : 2
10 10 10 10
WIMP Mass (GeV )

Here, effect is less severe bc the hardware threshold is so low it’s already below the ionization threshold in both
scenarios (for Si) so there’s no difference in NR thresholds between optimistic and worse case. In fact, Luke gain is no
longer useful for reducing threshold, instead use it to tune what ER backgrounds wind up in the signal NR region.
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