Charged Higgs boson searches with the ATLAS detector

(on behalf of the ATLAS Collaboration)

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

Introduction

After the Higgs discovery a major question is if this is the SM Higgs boson

- Or could it be the first state of a larger scalar sector?
- Many BSM models predict extended Higgs sectors containing H[±] bosons
 - E.g. Two Higgs doublet models (2HDM), Higgs triplets
- Present new run-2 ATLAS searches for heavy H[±] bosons
 - H^+ → τν in range 200 < m(H[±]) < 2000 GeV with 14.7 fb⁻¹
 - $H^+ \rightarrow tb$ in range 300 < m(H^{\pm}) < 1000 GeV with 13.2 fb⁻¹
- For $m(H^{\pm}) > m(t)$, dominant production is in association with top quark

Theory Overview

2HDM: 5 physical bosons (h, H, A, H[±])

4 types depending on I and u/d couplings

u_R^i	d_R^i	e_R^i
Φ_2	Φ_2	Φ_2
Φ_2	Φ_1	Φ_1
Φ_2	Φ_2	Φ_1
Φ_2	Φ_1	Φ_2
	$egin{array}{c c} u_R^i & & \ \Phi_2 & & \ \end{array}$	$egin{array}{cccc} u_R^i & d_R^i & \ \Phi_2 & \Phi_2 & \ \Phi_2 & \Phi_1 & \ \Phi_2 & \Phi_2 & \ \Phi_2 & \Phi_2 & \ \Phi_2 & \Phi_2 & \ \Phi_2 & \Phi_1 & \ \end{array}$

Minimal Supersymmetric SM (MSSM)

Special case of type II 2HDM

Described by tanβ and m_A at tree-level

- Several benchmarks e.g.
 - m_h^{max} (stop mixing for max m_h)
 - m_h^{mod±} (modified stop mixing)

hMSSM: take m_h = 125 GeV as input

 Enables phenomenology to be described by tanβ and m_A to good approx at higher orders

• $H^+ \rightarrow \tau v$ and tb decays dominate

arXiv:1307.1347

ATLAS tau and b-jet identification

$H^+ \rightarrow \tau v$: selection

Hadronic τ + hadronic top decay

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi_{\tau,\rm miss})}$$

$H^+ \rightarrow \tau v$: background modelling

$H^+ \rightarrow \tau v$: systematic uncertainties

- Systematics arise from experimental effects, determination of jet $\rightarrow \tau_{had}$ fakes, modelling of MC backgrounds and signal
 - Statistical uncertainties start to dominate at high mass

Source of systematic	Impact on the expected limit (in %)			
uncertainty	$m_{H^+} = 200 {\rm GeV}$	$m_{H^+} = 1000 \text{ GeV}$		
Experimental				
luminosity	1.5	0.9		
trigger	< 0.1	< 0.1	Jet ·	$\rightarrow \tau_{had}$
$ au_{ m had-vis}$	1.0	1.4	fake	2S
jet	3.0	0.2	9	CR stats
$E_{\mathrm{T}}^{\mathrm{miss}}$	< 0.1	< 0.1		Varving
Fake factors			•	varying
ff	0.8	4.7		
Signal and background models				
$t\bar{t}$ modelling	13.2	3.5	9	Irue τ _{had}
H^+ signal modelling	1.4	1.4		subtraction

Top modelling:

Biggest at high m(H[±])

Biggest at

low m(H[±])

 Cross-section, ME (Powheg vs aMC@NLO), PS (Pythia vs Herwig), ISR/FSR

- Signal modelling
 - μ_F/μ_R scale, PDF, UE tune

7

$H^+ \rightarrow \tau v$: results

- Observed σ x BR limit:
 - 2.0 pb 8 fb

Obs. hMSSM exclusion:

- 42 < tanβ < 60 @ m(H⁺) = 200 GeV
- 200 < m(H⁺) < 540 GeV @ tanβ=60</p>
- Significantly improves 2015 result

$H^+ \rightarrow tb$: selection

$H^+ \rightarrow tb$: background modelling

Background dominated by ttbar + jets production

Split into light/heavy flavour based on extra jets: $t + light, tt + \ge 1c, tt + \ge 1b$

Modelled using Powheg + Pythia 6

- tt+light and tt+ \geq 1c reweighted to NNLO prediction for p_T^{ttbar} and p_T^t
 - A. Mitov et al (arXiv:1606.03350)
- tt+≥1b kinematics reweighted to
 NLO Sherpa+OpenLoops prediction
 - Inclusive normalisation maintained
- Inclusive ttbar $\sigma = 832^{+46}_{-51}$ pb
 - Normalisation of tt + ≥1c and tt + ≥1b freely floating in fit

BDT trained against

- Only tt+≥1b for m(H[±]) ≤ 500 GeV
- All ttbar background for $m(H^{\pm}) \ge 500 \text{ GeV}$

Pre-fit background description (signal normalised to 1 pb)

$H^+ \rightarrow tb$: post-fit distributions

SR and CR normalisation and shape well described after fit

$H^+ \rightarrow tb$: systematic uncertainties

tt + ≥1b NLO

Uncorrelated amongst I/c/b

Systematic uncertainties dominated by ttbar modelling, especially heavy flavour

Ordered impact on fitted signal strength for 300 & 800 GeV H⁺

		NONCE ANCO					
		hish generator	Uncertainty Source	$\Delta \mu (I$	H_{300}^{+})	$\Delta \mu(I)$	H_{800}^{+})
		nao generator	$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53	+0.07	-0.07
			Jet flavour tagging	+0.30	-0.29	+0.07	-0.07
	Vary PDF	s & shower	$t\bar{t} + \ge 1c$ modelling	+0.23	-0.22	+0.03	-0.03
	recoil sch	ieme	Background model statistics	+0.19	-0.19	+0.05	-0.05
	50% MPI	uncertainty	Jet energy scale and resolution	+0.18	-0.17	+0.03	-0.03
			$t\bar{t}$ +light modelling	+0.16	-0.16	+0.03	-0.03
			Other background modelling	+0.15	-0.14	+0.03	-0.03
	tt + ≥1c fron	n ME vs PS	Jet-vertex association, pileup modelling	+0.12	-0.11	+0.01	-0.01
	MG5 aM	IC@NLO +	Luminosity	+0.12	-0.12	+0.01	-0.01
	Herwig++	Light lepton (e, μ) ID, isolation, trigger	+0.01	-0.01	< +0.01	< -0.01	
			Total systematic uncertainty	+0.72	-0.79	+0.13	-0.11
			$t\bar{t} + \ge 1b$ normalisation	+0.36	-0.36	+0.03	-0.03
9	Inclusive		$t\bar{t} + \ge 1c$ normalisation	+0.15	-0.14	+0.02	-0.02
	PS, ME, IS	SR/FSR (as τν)	Total statistical uncertainty	+0.44	-0.43	+0.08	-0.08
	Cross sec	tion	Total	+0.84	-0.90	+0.15	-0.13

On the detector side, the b-tagging and jet enery scale/resolution uncertainties are the largest contributions

$H^+ \rightarrow tb$: results

- Observed σ x BR limit:
 - 1.1 pb -0.18 pb
 - Unlike run 1, no broad excess

- Obs. m_h^{mod-} exclusion:
 - $tan\beta = 0.5$ for $m(H^+) \le 855$ GeV
 - Starts to exclude high tanβ
 - m(H⁺) ≤ 380 GeV
 - Surpases run 1 results

Summary

- ATLAS has preformed run-2 searches for heavy charged bosons in $H^{\pm} \rightarrow \tau v$ and $H^{\pm} \rightarrow tb$ decays
 - ATLAS-CONF-2016-088
 - ATLAS-CONF-2016-089
- Unfortunately, no excess observed but significant improvement on run 1 exclusions at high masses

To appear soon

- Benefits from large increase in production cross section at 13 TeV
- Looking forward to many new and improved H[±] searches soon
 - $H^+ \rightarrow tb$ starting to probe high tan β
 - Lower masses can be probed
 - Probe other extended Higgs sectors
 - e.g. Higgs triplets

H⁺ → τν (1)

W+jets CR

2015 comparison

m_h^{mod-} exclusion

$H^+ \rightarrow tb (1)$

Example of NNLO p_T^t

$H^{+} \rightarrow tb$ (2)

BDT details

BDT Parameter	Value
BoostType	GradientBoost
Shrinkage	0.20
MinNodeSize	1%
NTrees	120
MaxDepth	3

The variables entering the BDT training are :

- The highest jet $p_{\rm T}$.
- The mass of the *bb* pair with minimum ΔR .
- The $p_{\rm T}$ of the fifth jet, ordered by *b*-tagged jets and then non-*b*-tagged jets
- The second Fox-Wolfram moment calculated using all jets and leptons.
- The average ΔR of all *bb* pairs.
- The ΔR of the lepton and the *bb* pair with smallest ΔR .
- The mass of the untagged jet-pair with minimum ΔR .
- The scalar sum of $E_{\rm T}$ calculated using all jets.
- The mass of the *bb* pair with maximum $p_{\rm T}$.
- The mass of the *bb* pair with maximum mass.
- The mass of the jet triplet with maximum $p_{\rm T}$.
- The centrality calculated using all jets and leptons.

BDT Output

$H^+ \rightarrow tb (3)$

Pre-fit event yields

Process	4 <i>j</i> 2 <i>b</i>	$4j \ge 3b$	5 <i>j</i> 2 <i>b</i>	$\geq 6j2b$
$t\bar{t}+\geq 1c$	10800 ± 2300	890 ± 300	10800 ± 2000	11500 ± 3600
$t\bar{t}+\geq 1b$	4580 ± 930	1650 ± 490	4440 ± 540	4800 ± 1200
$t\bar{t}$ + light	160000 ± 30000	5310 ± 1550	91000 ± 17000	54000 ± 24000
Fakes	9200 ± 4400	820 ± 360	3700 ± 1600	1560 ± 670
$t\bar{t} + W$	99 ± 17	4.33 ± 0.99	130 ± 22	204 ± 40
$t\bar{t} + Z$	113 ± 21	15.7 ± 4.1	147 ± 25	270 ± 46
Single top	5900 ± 1600	243 ± 84	3470 ± 1140	2060 ± 820
Other top	4330 ± 1620	157 ± 30	1480 ± 280	630 ± 160
Diboson	420 ± 220	19 ± 12	200 ± 110	164 ± 88
W + jets	5250 ± 2370	183 ± 98	2300 ± 1100	1350 ± 650
Z + jets	1210 ± 580	42 ± 23	410 ± 210	260 ± 130
ttH	63.8 ± 8.9	28.0 ± 4.9	96 ± 11	198 ± 28
tH	9.6 ± 2.8	5.2 ± 1.6	8.1 ± 2.4	9.9 ± 3.1
Total	202000 ± 36000	9300 ± 2000	118000 ± 23000	77000 ± 27000
Data	208329	11904	124688	84556
H_{300}^+	245 ± 24	124 ± 18	253 ± 20	228 ± 32
H_{800}^{+}	170 ± 16	80 ± 15	249 ± 19	477 ± 49
Process	5 <i>j</i> 3 <i>b</i>	$5j \ge 4b$	$\geq 6j3b$	$\geq 6j \geq 4b$
$t\bar{t} + \ge 1c$	1170 ± 330	30 ± 11	1550 ± 530	71 ± 36
$t\bar{t}+\geq 1b$	2240 ± 460	222 ± 62	3200 ± 800	670 ± 190
$t\bar{t}$ + light	3640 ± 880	24 ± 15	2600 ± 1100	34 ± 22
Fakes	260 ± 130	19.9 ± 9.3	300 ± 130	1.2 ± 0.6
$t\bar{t} + W$	8.3 ± 1.8	0.19 ± 0.07	20.8 ± 4.6	1.24 ± 0.39
$t\bar{t} + Z$	27.1 ± 5.9	4.8 ± 1.5	66 ± 12	17.9 ± 4.2
Single top	218 ± 85	8.1 ± 5.0	210 ± 100	21 ± 14
Other top	87 ± 17	6.3 ± 2.5	66 ± 16	8.3 ± 2.3
Diboson	15.6 ± 9.6	0.39 ± 0.29	14.4 ± 8.3	2.0 ± 1.3
W + jets	165 ± 100	2.3 ± 3.1	106 ± 54	10.4 ± 7.0
Z + jets	37 ± 27	0.72 ± 0.65	14.7 ± 7.9	1.17 ± 0.74
ttH	49.7 ± 7.0	11.8 ± 2.3	119 ± 18	44.9 ± 9.2
tH	4.4 ± 1.3	1.02 ± 0.35	5.9 ± 1.9	1.92 ± 0.68
Total	7900 ± 1500	331 ± 94	8300 ± 1900	890 ± 240
Data	10755	418	11561	1285
H_{300}^+	173 ± 23	24.1 ± 4.0	201 ± 31	62 ± 12
H^+	138 ± 21	20.0 ± 4.3	366 ± 51	117 ± 24

$H^+ \rightarrow tb (4)$

- Post-fit event yields
 - 300 GeV

Process	4 <i>j</i> 2 <i>b</i>	$4j \ge 3b$	5 <i>j</i> 2 <i>b</i>	$\geq 6j2b$
H_{300}^+	-240 ± 210	-120 ± 110	-250 ± 220	-170 ± 150
$t\bar{t}+\geq 1c$	18500 ± 7300	1860 ± 670	18600 ± 6600	14800 ± 5600
$t\bar{t}+\geq 1b$	6500 ± 1300	2310 ± 450	6900 ± 1200	8400 ± 1300
$t\bar{t}$ + light	156800 ± 7400	5910 ± 710	88800 ± 6400	55700 ± 5300
Fakes	8100 ± 2000	1330 ± 300	3080 ± 750	1360 ± 310
$t\bar{t} + W$	99 ± 16	5.2 ± 0.9	131 ± 22	208 ± 40
$t\bar{t} + Z$	113 ± 20	15.9 ± 4.1	147 ± 23	276 ± 40
Single top	5400 ± 1300	250 ± 74	2950 ± 830	1630 ± 540
Other top	4400 ± 1200	172 ± 49	1540 ± 450	670 ± 200
Diboson	450 ± 220	23 ± 12	220 ± 110	184 ± 88
W + jets	6700 ± 2200	250 ± 110	2120 ± 780	1140 ± 440
Z + jets	1310 ± 560	49 ± 21	460 ± 200	300 ± 130
ttH	62.9 ± 6.8	27.8 ± 3.4	95.7 ± 9.5	200 ± 22
tH	9.5 ± 2.7	5.1 ± 1.5	8.1 ± 2.3	9.9 ± 2.9
Total	208400 ± 8600	12010 ± 750	125000 ± 6800	84800 ± 5400
Data	208329	11904	124688	84556
H_{300}^+	-170 ± 150	-25 ± 21	-200 ± 180	-62 ± 53
$t\bar{t}+\geq 1c$	2390 ± 720	66 ± 21	2240 ± 780	102 ± 44
$t\bar{t} + \ge 1b$	3490 ± 540	320 ± 37	5580 ± 640	1090 ± 90
$t\bar{t}$ + light	3990 ± 610	36 ± 13	2940 ± 550	40 ± 21
Fakes	420 ± 110	19.2 ± 0.8	410 ± 110	1.2 ± 0.6
$t\bar{t} + W$	9.5 ± 1.7	0.2 ± 0.1	23.6 ± 4.7	1.4 ± 0.4
$t\bar{t} + Z$	28.0 ± 5.7	4.7 ± 1.3	68.8 ± 9.8	18.5 ± 3.5
Single top	202 ± 64	5.9 ± 3.1	173 ± 71	16.5 ± 9.5
Other top	94 ± 26	6.3 ± 2.2	71 ± 22	8.7 ± 2.3
Diboson	17.4 ± 9.0	0.4 ± 0.2	16.7 ± 8.3	2.3 ± 1.1
W + jets	164 ± 81	2.1 ± 0.9	97 ± 43	8.2 ± 3.6
Z + jets	39 ± 24	0.7 ± 0.3	17.5 ± 7.6	1.6 ± 0.7
ttH	49.6 ± 5.2	11.6 ± 1.6	122 ± 13	46.4 ± 6.2
tH	4.5 ± 1.3	1.0 ± 0.3	6.0 ± 1.8	2.0 ± 0.6
Total	10900 ± 380	462 ± 47	11800 ± 600	1300 ± 100
Data	10755	418	11561	1285

$H^+ \rightarrow tb(5)$

Pre-fit plots in CR 0

(c)

$H^+ \rightarrow tb(6)$

Pre-fit plots in SR 300 GeV

$H^+ \rightarrow tb(7)$

- Pre-fit plots in SR 0
 - 800 GeV

(c)

22

(d)

0.8

H⁺ → tb (8)

- Post-fit plots in CR
 - 300 GeV

$H^+ \rightarrow tb (9)$

- Post-fit plots in CR
 - 800 GeV

$H^+ \rightarrow tb (10)$

- Post-fit plots in SR
 - 800 GeV

(c)

25

(d)