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The Standard Model of Heavy Ion Collisions

Stage Examples of QCD input
Pre-equilibrium evolution How perturbative is the medium at T ∼ 3Tc?
Hydrodynamic evolution Equation of State

Hadronization, chemical freeze-out Tc, fluctuations below Tc
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The RHIC beam energy scan
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QCD in the grand canonical ensemble

Do conserved charges fluctuate in HIC?
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Acceptance cut in rapidity and transverse momentum → we have a sub-volume,
so the grand canonical ensemble applies
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QCD in the grand canonical ensemble

The expectation value of a conserved charge:

〈Nq〉 = T
∂ logZ
∂µq

The response to µq is given by the fluctuations of the conserved charge:

∂ 〈Ni〉
∂µj

= T
∂2 logZ
∂µi∂µj

=
1

T
(〈NiNj〉 − 〈Ni〉 〈Nj〉)

The higher order susceptibilities:

χu,d,s,ci,j,k,l =
∂i+j+k+l

(
p/T 4

)
(∂µ̂u)i(∂µ̂d)j(∂µ̂s)k(∂µ̂c)l

χB,S,Qi,j,k =
∂i+j+k

(
p/T 4

)
(∂µ̂B)i(∂µ̂S)j(∂µ̂Q)k

where µ̂ = µ/T . The relationship between the chemical potentials:

µu =
1

3
µB +

2

3
µQ µd =

1

3
µB −

1

3
µQ µs =

1

3
µB −

1

3
µQ − µS
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Lattice details

The 4stout staggered action

2+1+1 dynamical flavors

4 levels of stout smearing in the fermion action, with the smearing parameter
ρ = 0.125

The masses are set by bracketing both the pion and the kaon masses within a
few percent, keeping mc/ms = 11.85

The scale is set 2 ways: fπ and w0 (with Wilson flow). The scale setting
procedure is one of the sources of the systematic error in all of the plots.

Ensembles

For µ = 0 we have Nt = 8, 10, 12, 16, 20, 24. With aspect ratios LT = 3, 4 at
lower temperatures, and a fixed volume LTc ≈ 2 at higher temperatures
(T > 300MeV).

For imaginary µ we have Nt = 8, 10, 12, 16, aspect ratios LT = 3, 4, and no
high temperature configurations.
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Model estimates at low and high temperatures

Low temperatures: Hadron Resonance Gas

The interaction of the hadrons are introduced by adding all their resonances to
the heat bath, as free particles.

pHRG

T 4
=

1

V T 3

 ∑
i∈meson

logZM (T, V,mi, {µ}) +
∑

i∈baryon

logZB (T, V,mi, {µ})


High temperature: weakly interacting quarks

For an ideal gas we have:

p

T 4
=

8π2

45
+

7π2

60
Nf +

1

2

∑
f

(
µ2
f

T 2
+

µ4
f

2π2T 4

)

This means e.g. that χu4 = 0.608 or χud11 = 0 etc. This estimate can be improved
with resummed PT: Hard Thermal Loop, Dimensional Reduction
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Second order diagonal quark susceptibilities
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4th order susceptibilities at high temperature
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4th order susceptibilities at high temperature
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Two methods to calculate fluctuations

Direct method/Taylor expansion

Calculate the µ derivatives directly at µ = 0.

Pro: No additional systematic error coming from fitting.

Con: Higher derivatives are very noisy. (Sign problem.)

Analytical continuation

Simulate at imaginary µ. Do a fit for the µ dependence of different observables,
and deduce the derivatives that way.

Pro: Higher accuracy possible with the same amount of computer time.

Con: Has systematic errors coming from fitting, as at imaginary µ you have
an exact result, containing all orders of the Taylor expansion.

Attila Pásztor (Uni. Wuppertal) Fluctuations 11 / 17



Equation of state from the fluctuations

EoS at finite but small density

At general values of µB , µQ, µS we have:

p

T 4
=
∑
i,j,k

1

i!j!k!
χBSQijk (T )µ̂iBµ̂

j
Sµ̂

k
Q

If we restrict outselves to conditions present in HIC:
〈nS〉 = 0 and 〈nQ〉 = 0.4 〈nB〉:

p

T 4
= c0(T ) + c2(T ) · µ̂2

B + c4(T ) · µ̂4
B + c6(T ) · µ̂6

B + . . .

The state-of-the-art at the moment is O
(
µ6
B

)
. The expansion is under control for

µB/T ≤ 2, or in terms of the RHIC beam energy scan, for:

√
s = 200, 62.4, 39, 27, 19.6, 14.5GeV
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Taylor coefficients of the pressure

Results from analytical continuation.
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Consistent with direct evaluation, but with smaller errorbars.
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Different orders in the EoS

From direct method, plot from BNL-Bielefeld-CCNU collaboration.
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Isentropic trajectories

In ideal hydrodynamics, we have (entropy)/(baryon number)=fixed. These
trajectories can be readily calculated from the EoS.
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EoS along the trajectories
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Summary

Second and fourth order fluctuations can be continuum extrapolated with the
direct method. Results in both the low- and high temperature regime:
hep-lat/1507.04627 (WB), Results in the high temperature regime with a
different discretization: hep-lat/1507.06637 (HotQCD)

HRG agrees with lattice data up to T ≈ 150..155MeV. (→ good news for
models of chemical freezout)

HTL agrees with lattice from T ≈ 250MeV. (→ good news for HTL
based/kinetic theory approximations)

For sixth order fluctuations, analytical continuation works better.

Equation of state up to O(µ6
B) in the continuum from analytical

continuation: hep-lat/1607.02493

This allows us to have the phenomoenlogically relevant equation of state for
beam energies down to

√
s = 14.5GeV.

Results with different staggered discretization are compatible within errors.
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