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The Standard Model of Heavy lon Collisions

PP . e final detected
Relativistic Heavy-Ion Collisions particle distributions

made by Chun Shen
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viscous hydrodynamics free streaming

collision evolution
t~0fm/c T~1fm/c T ~10 fm/c T ~ 105 fm/c

Stage Examples of QCD input
Pre-equilibrium evolution How perturbative is the medium at 7" ~ 37,7
Hydrodynamic evolution Equation of State

Hadronization, chemical freeze-out T., fluctuations below T,
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The RHIC beam energy scan

Quark-Gluon Plasma
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Hadronic Gas
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QCD in the grand canonical ensemble

Do conserved charges fluctuate in HIC?

dN/dy

AY,
accept |

T

X

Acceptance cut in rapidity and transverse momentum — we have a sub-volume,

y

so the grand canonical ensemble applies

Attila Pésztor (Uni. Wuppertal)

Fluctuations

4/17



|
QCD in the grand canonical ensemble

The expectation value of a conserved charge:
dlog Z
Olg

The response to 1, is given by the fluctuations of the conserved charge:

<Nq> =T

8<Nz> - TazlogZ - l
Op; Opidp; T

((NiNj) — (Ni) (N;))

The higher order susceptibilities:

e Hititk+l (p/T4) P50 _ ititk (p/T4)
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where i = u/T. The relationship between the chemical potentials:

1 2 1 1 1 1

Fu = SHB + 3HQ fd = hB = 3HQ Fs = 3HB = 3HQ — /s
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Lattice details

The 4stout staggered action

24141 dynamical flavors

4 levels of stout smearing in the fermion action, with the smearing parameter
p=0.125

The masses are set by bracketing both the pion and the kaon masses within a
few percent, keeping m./ms = 11.85

The scale is set 2 ways: fr and wq (with Wilson flow). The scale setting
procedure is one of the sources of the systematic error in all of the plots.

Ensembles

For = 0 we have N; = 8,10,12, 16, 20,24. With aspect ratios LT = 3,4 at
lower temperatures, and a fixed volume LT, ~ 2 at higher temperatures

(T > 300MeV).

For imaginary 1 we have N; = 8,10, 12, 16, aspect ratios LT = 3,4, and no
high temperature configurations.
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Model estimates at low and high temperatures

Low temperatures: Hadron Resonance Gas

The interaction of the hadrons are introduced by adding all their resonances to
the heat bath, as free particles.

HRG
P 1
i = v7e E log ZM (T, V,m;, {u}) + E log ZP (T, V,mi, {u})

i€meson i€baryon

High temperature: weakly interacting quarks

For an ideal gas we have:

4
p 787r
n= e Z( W2T4>

This means e.g. that x% = 0.608 or x¥ = 0 etc. This estimate can be improved
with resummed PT: Hard Thermal Loop, Dimensional Reduction
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Second order diagonal quark susceptibilities
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4th order susceptibilities at high temperature
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4th order susceptibilities at high temperature
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Two methods to calculate fluctuations

Direct method/Taylor expansion
Calculate the p derivatives directly at p = 0.

@ Pro: No additional systematic error coming from fitting.

o Con: Higher derivatives are very noisy. (Sign problem.)

Analytical continuation

Simulate at imaginary p. Do a fit for the i dependence of different observables,
and deduce the derivatives that way.

@ Pro: Higher accuracy possible with the same amount of computer time.

@ Con: Has systematic errors coming from fitting, as at imaginary p you have
an exact result, containing all orders of the Taylor expansion.
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Equation of state from the fluctuations

EoS at finite but small density

At general values of up, 1g, jts we have:

D 1 BSQuymri nd ~k
71 = 2 Kok (Dt
0,9,k

If we restrict outselves to conditions present in HIC:
(ng) =0 and (ng) = 0.4 (ng):
p

71 = co(T) + ea(T) - iy + ea(T) - jilg + c6(T) - i + -

The state-of-the-art at the moment is O (1%;). The expansion is under control for
pp/T <2, or in terms of the RHIC beam energy scan, for:

Vs = 200, 62.4, 39, 27, 19.6, 14.5GeV
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Taylor coefficients of the pressure

Results from analytical continuation.
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Consistent with direct evaluation, but with smaller errorbars.
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Different orders in the EoS

T
0.7 | BNL-Bielefeld-CCNU
[ preliminary

| Ng=0, Ng/Ng=0.4

[P(T,ug)-P(T,0)/T*

From direct method, plot from BNL-Bielefeld-CCNU collaboration.
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Isentropic trajectories

In ideal hydrodynamics, we have (entropy)/(baryon number)=fixed. These

trajectories can be readily calculated from the EoS.
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EoS along the trajectories
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Summary

@ Second and fourth order fluctuations can be continuum extrapolated with the
direct method. Results in both the low- and high temperature regime:
hep-lat/1507.04627 (WB), Results in the high temperature regime with a
different discretization: hep-lat/1507.06637 (HotQCD)

@ HRG agrees with lattice data up to T ~ 150..155MeV. (— good news for
models of chemical freezout)

@ HTL agrees with lattice from T' =~ 250MeV. (— good news for HTL
based/kinetic theory approximations)

@ For sixth order fluctuations, analytical continuation works better.

e Equation of state up to O(u%) in the continuum from analytical
continuation: hep-lat/1607.02493

@ This allows us to have the phenomoenlogically relevant equation of state for
beam energies down to /s = 14.5GeV.

@ Results with different staggered discretization are compatible within errors.
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