Dark Photons in the Dalitz-like decay of a scalar

G Kozlov
JINR, Dubna
DP: what do we know

New Physics: …, Dark matter/ Dark photons, … Monophotons

Search through: Cosmological observations or lab’s experiments

Accelerator exp’s: - CERN SPS

\[e^- Z \rightarrow e^- Z \bar{\gamma} \rightarrow e^- Z e^+ e^- \]

\[10^{-5} < \varepsilon_{\gamma-\bar{\gamma}} < 10^{-3} \]

NA64

S. Gninenko PRD 89 (2014) 075008

- SINDRUM, PSI

\[\pi^- p \rightarrow \pi^0 n \rightarrow \gamma \bar{\gamma} n \rightarrow \gamma e^+ e^- n \]

\[\varepsilon_{\gamma-\bar{\gamma}} > 10^{-3} \]

S. Gninenko PRD 87 (2013) 035030

Colliders @ high energies (LHC/…/FCC…)

\[\mathcal{S} \rightarrow \gamma \bar{\gamma} \rightarrow \gamma \bar{\nu}\nu, \quad \mathcal{S} = H, \ldots \]

\[\varepsilon_{\gamma-\bar{\gamma}} < 3 \cdot 10^{-2} \]

\[\mathcal{O}_{SM} \mathcal{O}_{IR} \sim \varepsilon q \bar{\gamma} \gamma q SB \mu M^{-1} \]

G Kozlov ICHEP2016 BSM
In the absence of an explicit sector that breaks gauge invariance, the interactions of SM gauge bosons with fermions are approximately conformal down to QCD scale $\Lambda_{QCD} \sim O(1\text{GeV})$.

• Could we see something else – not in terms of SM?

• Should one expect new stuff?
 Great!

• Scale invariant hidden world?

✓ The question of triggering gauge symmetry breaking in the SM is tied to the dynamical breaking of scale invariance.
Hidden world

At high enough energies \(Q \sim O(M) \) (UV, Cosmology)

the nearly conformal (matter) sector couples in the UV to the HIDDEN world through the exchange of heavy state(s), the messenger(s)

Mediators in terms of ATLAS – CMS LHC Forum, arxiv:1507.00966

Stage I

\[
\begin{bmatrix}
\text{Nearly conformal} \\
\text{conformal}
\end{bmatrix}
\overset{\text{heavy messenger(s)}}{\leftrightarrow}
\begin{bmatrix}
\text{Hidden world}
\end{bmatrix}
\]

Below \(UV \ M \):

\[
\frac{1}{M^d} O_{SM} \quad \frac{1}{M^{d_{UV}}} O_{UV}
\]

No masses allowed

All masses can be generated dynamically in **IR**.

G Kozlov ICHEP2016 BSM
Conformal symmetry is spont. broken – low energy eff. theory contains a dilaton field

\[x_\mu \to x'_\mu = e^{-\lambda} x_\mu , \quad \mathcal{S} = \bar{\sigma}, \quad \bar{\sigma}(x) \to \bar{\sigma}'(x') = \bar{\sigma}(x) + \lambda f, \quad f \geq v = 246 GeV \]

Below breaking scale the symmetry is realized non-linearly

\[L \sim \sum_i g_i(\mu) O_i(x), \quad g_i(\mu) \to g_i(\mu \bar{\sigma}/f)(\bar{\sigma}/f)^{4-d_i} \]

Stage II (coupling of dilaton to DP sector in UV)

- In UV: \[\frac{1}{M^{d_{UV}-2}} \left| \bar{\sigma}^2 \right| O_{UV}, \quad \bar{\sigma}(x) = \sqrt{H^+ H}(x), \quad m_\sigma^2 \sim x_\sigma f^2 \]

- in IR \quad \downarrow \quad \text{flows to couplings of } H \text{ to DP operator } O_{IR}

\[\text{const} \frac{\Lambda^{d_{UV}-d_{IR}}}{M^{d_{UV}-2}} \left| H^2 \right| O_{IR} \quad \text{Scale invariance is almost breaking} \]
DM particle is the only DP within the reach of the LHC energy

Kinetic term $\sim \epsilon F_{\mu\nu} B^{\mu\nu} \quad SU_L(2) \times U_Y(1) \times U_B'(1) \iff \text{DP origin}$

Triangle anomaly coupling $L_{\gamma \gamma} = \epsilon g_{\gamma \gamma} F_{\mu\nu} B^{\mu\nu} S, \quad B^{\mu\nu} = \partial^\mu B^\nu - \partial^\nu B^\mu$

Basic object $S \to \gamma \gamma \to \gamma \bar{\nu}\nu, \quad S = \begin{cases} \text{higgs} \\ \text{dilaton} \end{cases}$

LO: $\sigma(pp \to S X) = \sigma^{\exp}(pp \to H X) \times \frac{\Gamma^{th}(S \to gg)}{\Gamma^{SM}(H \to gg)}$

QCD radiative corrections $gg \to \text{Higgs} \iff gg \to \text{dilaton}$

Increasing of $\sqrt{s} \implies \text{Approx. conformal invariance} \quad \frac{\partial g(\mu)}{\partial \mu} \equiv 0$

Breaking \(\sim f > v = \langle H \rangle_0 \) by $\mu \approx M_{UV} \exp[-8\pi^2/(b_0 g_0^2)]$

CA: $\partial_\mu K^\mu = \theta^\mu_\mu = \frac{\beta(g)}{2g} G^a \mu \nu a G^{\mu\nu a} + \sum m_q \left[1 + \gamma_m(g) \right] \bar{q} q \neq 0$

G Kozlov ICHEP2016 BSM
Why LHC13 instead of LHC7?

\[S \sim m_s \sim f \sim s^{\alpha/2} \]

Strong coupling theory.

At \(\sqrt{s} \) below \(\Lambda \), \(\beta(g_i) \neq 0 \) conformal breaking

\[L \sim \sum g_i (\mu) O_i (x), \quad \theta^\mu = \sum g_i (\mu) (d_i - 4) O_i (x) + \sum \beta_i (g) \frac{\partial}{\partial g_i} L \]

Scale invariance exact if \(\beta(g_i) = 0, \quad d_i = 4 \)

\[L_{\text{trace}} = \frac{\chi}{f^2} \theta^\mu (SM), \quad \theta^\mu \neq 0, \quad \theta^\mu (SM) = \theta^\mu (SM)_{\text{tree}} + \theta^\mu (SM)_{\text{anom}} \]

Collider physics importance:

\[\theta^\mu (SM)_{\text{anom}} = -\frac{\alpha_s}{8\pi} b_0 \sum G^a_{\mu\nu} G^{\mu\nu,a} - \frac{\alpha}{8\pi} b_{EM} F_{\mu\nu} F^{\mu\nu} \]

Higgs has not such a coupling, only triangle-loop with heavy quarks

If QCD \(\in \) Conformal sector:

\[\sum_{\text{light}} b_0 + \sum_{\text{heavy}} b_0 = 0 \quad \Rightarrow \quad b_0 = -11 + \frac{2}{3} n_{\text{light}} \]

compared to Higgs

Important: The sum is splitting over all colored particles in mass scale separated by dilaton mass \(m_s \)

- Dilaton serves as the conformal compensator up to \(f = \nu \).
- The \(\sigma \) contribution to \(S \rightarrow \gamma \gamma \) decays corresponds to including states lighter than \(\sigma \).

G Kozlov RDMS Varva BSM
Effect of DP sector on observable(s)

Mixing strength ε is bounded by $\varepsilon < \frac{s^d}{(v^2 M^{d-2})^2}$

- Important: no dependence on d_{UV}, d_{IR}, Λ

- NP signals with DP increase with \sqrt{s}, d

Assume $\varepsilon \sim O(3\%)$, DP visible @ LHC for $M < 10^3$ TeV, $d=4$

For $S \rightarrow \gamma \gamma$: $L \sim O_{SM} O_{IR} \sim \varepsilon \bar{\psi} \gamma_\mu \psi S B^\mu M^{-1}$

Relevant energy scale $Q \sim m_q$, $q : top, ...$

Result: $\varepsilon < 3 \cdot 10^{-2}$, $q : top$, $d = 4$; $M > v$

LHC is a very good facility where the DM Physics can be tested well

G Kozlov ICHEP2016 BSM
Upper limit on $\varepsilon < \frac{S^d}{\left(v^2 M^{d-2}\right)^2}$, \(LHC \) up to $\sqrt{s} = 14\, TeV$, $M = 800 - 1000\, TeV$, $d = 4$

Estimation of DP mass m. \textit{Upper limit}

\[Am\left(\bar{\gamma} \rightarrow \nu \bar{\nu} \right) = \frac{1}{2} f_{\nu}^{2} \nu \left(g_{\nu}^{V} \gamma_{\beta} + g_{A_{\nu}}^{V} \gamma_{\beta} \gamma_{5} \right) \nu \bar{\gamma}_{\beta} \]

\[f_{\nu}^{2} = 4 \sqrt{2} Gm^{2}, \quad G \sim 10^{-5} \text{GeV}^{-2} \]

No final state interactions: (partial decay width)

\[\Gamma\left(\bar{\gamma} \rightarrow \nu \bar{\nu} \right) = \frac{1}{3} \bar{\alpha} \cdot \varepsilon^{2} m, \]

\[\downarrow \]

\[\frac{Gg_{\nu}^{2}m^{2}}{\sqrt{2\pi \bar{\alpha}}}, \quad g_{\nu}^{2} = g_{A_{\nu}}^{2} = g_{\nu}^{2} = \frac{1}{4} \]

For $\varepsilon < 3 \cdot 10^{-2} \Rightarrow m < 3.3 \text{GeV}$
DP mass \(m \) in \(S \) ! " **! "##

more detailed calculation are needed

E.g., EM! F

\[
M \sim \%^2 m^5 G^2 \left(\ln \frac{\Lambda^2}{m^2}, \frac{1}{6}\right)^2
\]

DP mass: Combined calculations give

\[
\begin{array}{ccc}
m & m & 1^{1/2} \\
0 & \sqrt{3} & \frac{3}{3} \\
0 & \sqrt{3} & \frac{3}{3} \\
0 \sum_{l:e} & \Lambda^2 & \frac{1}{6} \frac{3}{3} \\
0 \sum_{l:e} & \Lambda^2 & \frac{1}{6} \frac{3}{3} \\
\end{array}
\]

4 0.83 GeV, \(\Lambda_\% \sim O(m_Z), e^+e^\& \& + ^\& \& ~\text{loops} ~\]

\[! = 7.6 \times 10^3\]

Agree with excl. region by BaBar (2015), E787+E949 (2014), as well as (g-2) (2014)

G Kozlov ICHEP2016 BSM
Model (Higgs-Dilaton Abelian gauge theory).

- TPWF, $\delta'\left(p^2, M^2\right)$ singularities/ $\sigma(x)$ virtual state – dilaton

$$A_\mu - B_\mu \text{ mixing} \quad H - \bar{\sigma} \quad \text{LD}$$

$$L_\varepsilon = -\frac{1}{2} \varepsilon F_{\mu \nu} B^{\mu \nu} - \bar{\xi} \left(\partial A \right) \left(\partial B \right) + \bar{q} \left(i \hat{\partial} - m_q - g A \right) q - I^\mu \left(B_\mu - \partial_\mu \sigma \right)$$

Gauge inv. $A_\mu \rightarrow A_\mu + \partial_\mu \alpha$, $B_\mu \rightarrow B_\mu + \partial_\mu \alpha$, $\sigma \rightarrow \sigma + \alpha$, $q \rightarrow q e^{i g \alpha}$, $I_\mu \rightarrow I_\mu$, $\partial^2 \alpha(x) = 0$

$$F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu, \quad B_{\mu \nu} = \partial_\mu B_\nu - \partial_\nu B_\mu, \quad \xi = \varepsilon \bar{\xi}$$

Sub-canonical scalar operator $\sigma(x) = f^{-1} \bar{\sigma}(x)$

(primary operator
grandfather potential

(primary means not a derivative of another operator)

$$d \geq j_1 + j_2 + 2 - \delta_{j_1,j_2,0} \quad \text{Dim. of the gauge inv. primary operator}$$

$\sigma(x)$ provides the control over UV & IR divergences

G Kozlov ICHEP2016 BSM
LD & equations of motion

\[L = L_\varepsilon + L_\sigma - \frac{1}{2} m^2 B^2_\mu + L_{H\sigma}, \quad L_H \rightarrow L_\sigma = -\frac{\sigma}{\sqrt{2}} \sum_{q'} (m_q + x_\sigma y_{q'} y_{q'}) q' \bar{q}' \quad x_\sigma = \frac{m^2_\sigma}{f^2} < 1 \]

\[L_{H\sigma} = \frac{1}{2} \left[\left(\partial_\mu H \right)^2 + \left(\partial_\mu \bar{\sigma} \right)^2 \right] - \frac{\lambda}{4} \left(H^2 - \beta^2 \bar{\sigma}^2 \right)^2 - \frac{\eta}{4} \left(\bar{\sigma}^2 - f^2 \right)^2 \quad \beta = \frac{\left< H \right>}{\left< \bar{\sigma} \right>} = \frac{\nu}{f} \]

\[\partial^2 B_\mu = \frac{1}{\varepsilon} Y_\mu + (1 - \bar{\xi}) \partial_\mu \partial^\nu B_\nu, \quad Y_\mu = g \bar{q} \gamma_\mu q \quad (\ast) \]

\[B_\mu = \frac{\varepsilon}{m^2} \left[\partial^2 A_\mu - \frac{1}{\varepsilon} I_\mu - (1 - \bar{\xi}) \partial_\mu \partial^\nu A_\nu \right] \]

Eq. \((\ast)\) + Eq. \(B_\mu(x) = \partial_\mu \bar{\sigma}(x) \Rightarrow \left(\partial^2 \right)^2 \bar{\sigma}(x) \approx 0, \quad f \neq 0 \]

Dipole eq. for virtual field \(\bar{\sigma}(x)\)
What is the feature the dilaton field is characterized by?

TPWF (two-point Wightman function) \((!^2)^2'' (x) = 0\) # \((!^2)^2 \bar{\sigma}(x) = 0\)

General solution (expansion),
\[! (x)'' S (\# R^4)\] of temperate generalized functions on \(R^4\)

\[! (x) = b_1 \ln \frac{l^2}{x^2 + i \# x^0} + b_2 \frac{1}{x^2'' i \# x^0} + b_3\]

✓ parameter \(l\) breaks the scale invariance.

(Dilatation properties: \(!'' (x) = ! (x) \# \frac{1}{(8\pi)^2} \ln''\), \('' > 0\))

allow: est. the propagator of \(! (x)\) ! propagator of DP
Commutators

\[
\begin{aligned}
\Gamma(x), \Gamma(0) \equiv 2\mathcal{R} \text{ sign}(x^0) \b_1'(x^2) + b_2(x^2)
\end{aligned}
\]

- Coefficients

\[
\begin{aligned}
b_1 ! \quad & CCR \quad \left[\mathcal{A}(x), \mathcal{A}(0) \right]_{x^0=0} = i \mathcal{g} \quad (3^{(\mathcal{g})}) \\
\end{aligned}
\]

\[
\begin{aligned}
b_2 ! \quad & CCR \quad \left[\mathcal{\bar{A}}(x), \mathcal{\bar{A}}(0) \right]_{x^0=0} = i (3^{(\mathcal{g})})
\end{aligned}
\]

➢ To fix both \(b_1\) and \(b_2\) we choose:

\[
I = "m^2(\# \sigma \% A)"
\]

(invariant under gauge transformations)

- LD mixing term

\[
!m^2(A " \# \sigma)(B " \# \sigma) \text{ addit. to } \sim !F " B
\]

Stueckelberg-like term

G Kozlov ICHEP2016 BSM
Propagator of Dark Photon

\[\Pi^- (p) = p \cdot p^- \Pi(p), \quad \Pi(p) \sim \# \Pi_1(p) + \Pi_2(p), \]

\[\Pi_1(p) = \frac{1}{\sqrt{1 + \#}} \lim \frac{1}{N^0 \left(p^2 + \lambda^2 + i\# \right)^2} + i' \ 2 \ln \left(l^2 \lambda^2 \right) \Pi_4(p), \]

\[\Pi_2(p) = \frac{1}{2 \left(\frac{2}{m^2} \right) p^2 + i\#} \]

✓ The strong gauge condition \(B (x) = \Pi^- (x) \) used

○ In case no mixing, \(\Pi^- (p) \# \) standard photon photon propagator

➢ Dilaton mass does not enter the final solution

G Kozlov ICHEP2016 BSM
Conclusion

1. Influence of Conformal Sector (DP) to SM particle sector;
2. Upper limit for mixing strength \(|<3 \times 10^{-2}| \)

3. Interaction between DP & quarks is mediated by \(\sim \)
4. Dilaton is a portal to DP propagation with \(k^2 (" #B) = 0 \)
5. DP solutions, DP massive, \(m = 0.83 \, GeV \), \(\sim \) \(= 7.6 \times 10^{-3} \)

6. Dilaton mass does not enter the final solution.
7. If \(\sim = 0 \), \(S \sim \# \# \Rightarrow H \sim \# \#
8. LHC13: decay \(S \sim \) through \textit{a single photon} \(E_T \) signature, with both energies peaked at 0.5ms

\(LHC: \) \textit{channel in scalar decay is the best probe to discover DP}