

Elvire Bouvier (IPNL)

on behalf of the CMS collaboration

August 6, 2016

"Standard" measurements PRD 93(2016)2004

- Using the ideogram method after a kinematic fit
- Simultaneously measuring $m_{\rm t}$ and JSF, assuming that JSF is normally distributed with 1 as expected value and the JEC uncertainty as standard deviation

$$m_t = 172.32$$

 $\pm 0.25(stat)$
 $\pm 0.59(syst)$ GeV
JSF = 1.002 \pm 0.001

$$m_t = 172.35$$

 $\pm 0.16(stat)$
 $\pm 0.48(syst) \text{ GeV}$
 $JSF = 1.002 \pm 0.001$

dilepton

- Using the analytical matrix weighting technique
- Reconstructing each event 500 times, varying the jet p_T with a Gaussian distribution whose standard deviation is the JEC uncertainty

$$m_{\rm t} = 172.82$$

 $\pm 0.19({\rm stat})$
 $\pm 1.22({\rm syst})~{\rm GeV}$

Resolution on m_t PRD 93(2016)2004

Assigning to each event a weight reflecting the probability that the parton/jets permutations are correct to improve the resolution on $m_{\rm t}$

Before kinematic fit

After kinematic fit

Combination of the "standard" measurements PRD 93(2016)2004

 $\sqrt{s} = 7$ and 8 TeV

- Using the Best Linear Unbiased Estimate (BLUE) method
- Main systematic uncertainties
 - hadronization $\sim 0.35 \, \text{GeV}$
 - jet energy corrections

 \sim 0.15 GeV

hard-process scattering

 $\sim 0.15 \, \text{GeV}$

- Combination result:

$$m_{\rm t} = 172.44 \pm 0.13 \, ({\rm stat}) \pm 0.47 \, ({\rm syst}) \, {\rm GeV}$$

 \hookrightarrow total uncertainty < 0.3%

"Standard" methods "Alternative" methods Conclusion and outlook

"Standard" measurements

exploiting full kinematics of tt events

How to further reduce the uncertainty?

- Monte Carlo calibrated
- leading to precision better than 0.3%
- hitting a wall of systematic uncertainties

CMS 2012, dileptor 172.82 ± 0.19 ± 1.22 GeV 172.32 ± 0.25 ± 0.59 GeV ros william this secon WWW.TStarT'syste CMS 2012, lepton+jets 172.35 ± 0.16 ± 0.48 Ge This analysis, 19.7 fb (value + stat + syst) 172.44 ± 0.13 ± 0.47 GeV (value ± stat ± syst) 173.34 ± 0.27 ± 0.71 Ge/ 165 170 175 180 m, [GeV]

Where to search?

- more constraints from data in tt event modeling (underlying event, color reconnection, fragmentation...) \hookrightarrow some hints in backup
- "alternative" measurements
 - *→* alternative systematic sensitivity and/or better defined top quark mass
 - alternative event topologies
 - alternative observables:
 - using theoretically-calculable observables
 - only partially exploiting t\(\text{\text{t}}\) event kinematic
 - using techniques from New Physics searches

m_t from single-top events CMS PAS TOP-15-001 (2016)

Electroweak process:

- different CR
- different hard scattering
- different PDFs

- Enriched sample in t-channel single top events (71%)
 - \hookrightarrow 1 isolated μ , 1 b-tagged jet, E_{τ}^{miss} , 1 light jet with $|\eta| > 2.5$
- \triangleright Extraction of m_t from $m_{\ell vh}$
 - → Monte Carlo based calibration
- Main sources of systematic uncertainties: JEC, background calculations, fit calibration \sim 0.65 GeV \sim 0.40 GeV \sim 0.40 GeV

 $m_{\rm t} = 172.60 \pm 0.77 \, ({\rm stat})^{+0.97}_{-0.93} ({\rm syst}) \, {\rm GeV}$

$m_{\rm t}$ from the tt cross section

$$\sqrt{s} = 7 \text{ TeV}, \ \mathcal{L} = 5.0 \text{ fb}^{-1} \ \sqrt{s} = 8 \text{ TeV}, \ \mathcal{L} = 19.7 \text{ fb}^{-1}$$

Dilepton $e^{\pm}\mu^{\mp}$ channel

arXiv:1603.02303 (2016)

- Constraining $\alpha_s(m_Z)$ to the current world average
- Computing the expected σ_{ff} at NNLO+NNLL with Top++
- σ_{ff} measurement limited by luminosity uncertainty

$$\begin{split} \sigma_{i\bar{t}}(\text{7 TeV}) &= 173.6 \pm 2.1 (\text{stat})^{+4.5}_{-4.0} (\text{syst}) \pm 3.8 (\text{lumi}) \text{ pb} \\ \sigma_{i\bar{t}}(\text{8 TeV}) &= 244.9 \pm 1.4 (\text{stat})^{+6.3}_{-5.5} (\text{syst}) \pm 6.4 (\text{lumi}) \text{ pb} \end{split}$$

$$m_{\rm t}^{\rm pole} = 173.8^{+1.7}_{-1.8} \text{ GeV}$$

$m_{\rm t}$ from the tt cross section

CMS PAS TOP-16-006 (2016)

$$\sqrt{s} = 13 \text{ TeV}, \ \mathcal{L} = 2.3 \text{ fb}^{-1}$$

- Lepton+jets channel
- Constraining $\alpha_s(m_7)$ to the current world average
- Computing the expected σ_{ff} at NNLO+NNLL with Top++
- σ_{ff} measurement limited by luminosity uncertainty

$$\sigma_{t\bar{t}} = 834.6 \pm 2.5 (\text{stat}) \pm 22.8 (\text{syst}) \pm 22.5 (\text{lumi}) \text{ pb}$$

$$m_{\rm t}^{\rm pole} = 172.5^{+2.7}_{-2.3} \text{ GeV}$$

m_t from tt+jet shape CMS PAS TOP-13-006 (2016)

$$\sqrt{s} = 8 \text{ TeV}, \ L = 19.7 \text{ fb}^{-1}$$

- Kinematic reconstruction of dileptonic tt events with additional hard jets ($p_T > 50 \text{ GeV}$)
- Measuring the differential cross section wrt $\rho_S = 2 \times 170 \text{ GeV}/m(t\bar{t} + \text{jet})$
 - space with MADGRAPH+PYTHIA
- Comparing to the expected NLO cross section using POWHEG+PYTHIA
- Main systematic uncertainties:
 - ▶ POWHEG tt+jet modeling ~ 3.5 GeV
 - Ren. and fact. scales \sim 2.5 GeV
 - ME/PS matching \sim 1.5 GeV

 $m_t^{\text{pole}} = 169.9 \pm 1.1 \text{ (stat)}_{-3.1}^{+2.5} \text{ (syst)}_{-1.6}^{+3.6} \text{ (theo) GeV}$

Flyire Bouvier

"Standard" methods "Alternative" methods Conclusion and outlook

Well defined top quark mass

$m_{\rm t}^{\rm pole}$ vs MC-calibrated $m_{\rm t}$ measurements

 \Rightarrow Compatibility between m_t^{pole} and MC-calibrated m_t measurements

4 D > 4 B > +9 Q

$m_{\rm t}$ from $m_{\rm syl}$ PRD 93(2016)2006

Dilepton and lepton+jets channels

Reconstruction of secondary vertices (sv) with 3, 4, and 5 tracks within jets

Combined fit of 15 $m_{sv\ell}$ distributions

$$m_{\rm t} = 173.68 \pm 0.20 \, ({\rm stat})^{+1.58}_{-0.97} ({\rm syst}) \, {\rm GeV}$$

- Systematic uncertainties:
 - Main sources: b quark fragmentation, $p_T(t)$, and ME generator \sim 1 GeV \sim 0.8 GeV $\sim 0.4 \, \text{GeV}$
 - Experimental uncertainty < 0.5 GeV

$m_{\rm t}$ from $m_{\rm J/\psi+\ell}$ CMS PAS TOP-15-014 (2016)

- Dilepton and lepton+jets channels
- Reconstruction of $J/\psi \rightarrow \mu^+\mu^ \hookrightarrow$ very small branching fraction

- Extraction of $m_{\rm t}$ from $m_{\rm J/\psi+\ell}$
 - → Monte Carlo based calibration

$$m_{\rm t} = 173.5 \pm 3.0 \, ({\rm stat}) \pm 0.9 \, ({\rm syst}) \, {\rm GeV}$$

- Systematic uncertainties
 - Main sources:
 - $ho_{\rm T}(t) \sim 0.65\,{\rm GeV}$
 - ▶ ME/PS matching ~ 0.55 GeV
 - Ren. and fact. scales \sim 0.45 GeV
 - b-fragmentation uncertainty of $\pm 0.30 \, \text{GeV}$
 - Relevant exp. uncertainty < 0.10 GeV

4 D > 4 D > 4)Q(4

Top quark mass measurements at CMS

"Alternative" methods Conclusion and outlook

efined top quark mass Alternative observables with partial event reconstruction

Overview

"Standard" methods

at 8 TeV: $m_{sy\ell}$ most interesting observable

 \hookrightarrow good sensitivity to $m_{\rm t}$, different systematic uncertainties

in the future: maybe superseding $m_{\text{SV}\ell}$ with $m_{\text{J/W}+\ell}$

Top quark mass measurements at CMS

Bi-event subtraction technique CMS PAS TOP-14-011 (2015)

 $\sqrt{s} = 8 \text{ TeV}, \ L = 19.7 \text{ fb}^{-1}$

- \triangleright μ +jets channel
- $m_{\rm t}$ extracted from $R = m_{\rm iib}/m_{\rm ii}$
- no kinematic fit, all possible combinations kept
 - → estimation of the combinatorial background from data, by combining jets from 2 events

 $m_{\rm t} = 172.61 \pm 0.57 \, ({\rm stat}) \pm 0.90 \, ({\rm syst}) \, {\rm GeV}$

Main systematic uncertainties: ren. and fact. scales, $p_T(t)$, hadronization \sim 0.40 GeV \sim 0.35 GeV \sim 0.35 GeV \sim 0.00 GeV

$m_{\rm t}$ from $m_{\ell \rm b}$ and $m_{\rm T2}^{\rm bb}$ CMS PAS TOP-15-008 (2016)

New for this conference! $\sqrt{s} = 8 \text{ TeV}, \ L = 19.7 \text{ fb}^{-1}$

- Dilepton channel

 → 2 identical decay branches a and b
- ▶ $m_{\rm t}$ extracted from $m_{\ell \rm b}$ and $m_{\rm T2}^{\rm bb}$ ("stransverse mass")

- "child" particles: W bosons
- "upstream" momentum source: ISR

Top quark mass measurements at CMS

$m_{\rm t}$ from $m_{\ell \rm b}$ and $m_{\rm T2}^{\rm bb}$ CMS PAS TOP-15-008 (2016)

New for this conference! $\sqrt{s} = 8 \text{ TeV}$. $\mathcal{L} = 19.7 \text{ fb}^{-1}$

 $ightharpoonup m_{\rm t}$ extracted from $m_{\ell \rm b}$ and $m_{\rm T2}^{\rm bb}$ ("stransverse mass") → better sensitivity around the kinematic endpoints (Fisher information density)

► Combination of 1D (m_t) and 2D (m_t and JSF) fits: $m_t = 0.8 m_t^{1D} + 0.2 m_t^{2D}$ ⇒ shape estimation from MC templates with the Gaussian Processes regression technique

$$m_{\rm t} = 172.22 \pm 0.18 \, ({\rm stat})^{+0.89}_{-0.93} ({\rm syst}) \, {\rm GeV}$$

Main systematic uncertainties: $p_T(t)$, ren. and fact. scales, JEC \sim 0.5 GeV \sim 0.45 GeV \sim 0.45 GeV

Overview

"Standard" methods "Alternative" methods Conclusion and outlook

Conclusion and outlook

- Precision from standard measurements < 0.5 GeV</p>
 - total uncertainty dominated by systematic uncertainties
 - correlation between channels for the main sources
 - \hookrightarrow b hadronization, jet energy response, hard-scattering process
- Promising alternative measurements
 - good precision already at 8 TeV for most of them
 - $\hookrightarrow m_{\rm t}$ from $m_{\ell \rm b}$ and $m_{\rm T2}^{\rm bb}$ more precise than the "standard" measurement in the dilepton channel
 - various systematic uncertainties
 - $\hookrightarrow m_{\rm t}$ from single-top events for QCD modeling, $m_{\rm t}$ from $m_{\rm sv}\ell$ or $m_{\rm J/\psi+\ell}$ for detector resolution
- Consistency between all measurements
 - \hookrightarrow including m_{t}^{pole} from $\sigma(t\overline{t})$ and $t\overline{t}+jet$ shape

For more top-quark related results from the CMS collaboration: preliminary results and publications

Flyire Bouvier

Backup

$m_{ m t}$ from $m_{\ell m b}$ CMS PAS TOP-14-014 (2014)

- ▶ Dilepton $e^{\pm}\mu^{\mp}$ channel
- ► Theoretically:

$$m_{\ell b}^2 = \frac{m_{\rm t}^2 - m_{\rm W}^2}{2} (1 - \cos \theta_{\ell b})$$

Experimentally:

combination of lepton and highest- p_T b jet with smallest $m_{\ell h}$

 $\sqrt{s} = 8 \text{ TeV}, \ L = 19.7 \text{ fb}^{-1}$

Extraction of m_t from m_{ℓb}
 → Monte Carlo based measurement

$$m_{\rm t} = 172.3 \pm 0.3 \, ({\rm stat}) \pm 1.3 \, ({\rm syst}) \, {\rm GeV}$$

- Main sources of systematic uncertainties:
 - $ho_{\rm T}({\rm t}) \sim 0.65\,{\rm GeV}$
 - ▶ Ren. and fact. scales \sim 0.60 GeV
 - b-fragmentation \sim 0.60 GeV
 - ightharpoonup JEC \sim 0.45 GeV
 - Possibility to determine m_t^{pole} using MCFM → smaller sensitivity to p_T(t)

Flyire Bouvier

m_{t} from $p_{\mathrm{T}}(\ell^+\ell^-)$ CMS PAS TOP-16-002 (2016)

$$\sqrt{s} = 8 \text{ TeV}, \ L = 19.7 \text{ fb}^{-1}$$

- ▶ Dilepton $e^{\pm}\mu^{\mp}$ channel
- ► Extracting m_t from $p_T(\ell^+\ell^-)$ through $O^1 = \int x f(x) dx$ \hookrightarrow Monte Carlo based measurement

 $m_{\rm t} = 171.7 \pm 1.1 \text{ (stat)} \pm 0.5 \text{ (exp)}_{-3.1}^{+2.5} \text{ (th)}_{-0.0}^{+0.8} (p_{\rm T}(t)) \text{ GeV}$

Main systematic uncertainties: ren. and fact. scales, ME-PS matching, $p_{\rm T}(t)$ $\sim 2.5~{\rm GeV}$ $\sim 1.0~{\rm GeV}$ $\sim 0.85~{\rm GeV}$

Elvire Bouvier 20
Top quark mass measurements at CMS August 6, 2016

m_t from E_b CMS PAS TOP-15-002 (2015)

 $\sqrt{s} = 8 \text{ TeV}, \ L = 19.7 \text{ fb}^{-1}$

- Dilepton channel
- Theoretically

 - Robustness wrt \sqrt{s} , β_t , and ISR

MC-based calibration needed

Experimentally

Very sensitive to p_T(t)

$m_t = 172.29 \pm 1.17 \text{ (stat)} \pm 2.66 \text{ (syst)} \text{ GeV}$

Main systematic uncertainties: $p_T(t)$, ME generator, JEC

 \sim 1.5 GeV \sim 1.5 GeV \sim 1.2 GeV

Kinematic endpoint method EPJC 73 (2012) 2494

$$\sqrt{s}=7$$
 TeV, $\mathcal{L}=5.0~\mathrm{fb}^{-1}$

- Dilepton channel
- Underconstrained system
 - $\hookrightarrow \mu_{\rm bb}$: variable designed on purpose, weakly-correlated to the invariant mass $M_{\rm b\ell}$
- $t \xrightarrow{b}_{W^+} \stackrel{\ell^+}{\longleftarrow} \nu$ $\bar{t} \xrightarrow{\bar{b}}_{W^-} \stackrel{\ell^-}{\longleftarrow} \bar{\nu}$

M_{bl} (GeV)

[GeV]

150 200

- $m_{\rm t}$ extracted from $\mu_{\rm bb}^{\rm max}$ and $M_{\rm b\ell}^{\rm max}$, assuming $m_{\rm v}=0$ and $M_{\rm W}=80.4~{\rm GeV}$
 - → no Monte Carlo calibration needed

 $m_{\rm t} = 173.9 \pm 0.9 \, ({\rm stat})^{+1.7}_{-2.1} ({\rm syst}) \, {\rm GeV}$

Top quark-antiquark mass difference $\sqrt{s} = 8 \text{ TeV}, \ L = 18.9 \text{ fb}^{-1}$

- $ightharpoonup \Delta m_{
 m t} = m_{
 m t} m_{
 m \bar{t}}$ as a test of CPT symmetry
- ► Lepton+jets channel
- Reconstruction of hadronically decaying top quarks after a kinematic fit
- ▶ Ideogram likelihood method for ℓ^+ + jets events and ℓ^- + jets events separately

 $\Delta m_{\rm t} = -272 \pm 196 \, ({\rm stat}) \pm 122 \, ({\rm syst}) \, {\rm GeV}$

- ◀ □ ▶ ◀ 🗗 ▶ 쒸 Q (~

Top quark mass measurements at CMS

Combination of the "standard" measurements PRD 93(2016)2004

Using the Best Linear Unbiased Estimate (BLUE) method

Combination of the "standard" measurements PRD 93(2016)2004

\sqrt{s} = 8 TeV

Main systematic uncertainties:				
	all-jets	$\delta m_{\rm t}$ (GeV) lepton $+$ jets	dilepton	
Experimental uncertainties				-
Jet energy corrections				
JEC: intercalibration	+0.02	+0.01	+0.03	
 JEC: in situ calibration 	+0.19	+0.12	+0.24	\sim 0.15 GeV
JEC: uncorrelated non-pileup	-0.16	-0.10	-0.28	0.15 GCV
JEC: uncorrelated pileup	-0.06	-0.04	-0.12	
and the second s				
Modeling of hadronization				
b jet modelingb fragmentation	+0.04	< 0.01	-0.69	
semileptonic b hadron decays	-0.13	-0.16	-0.03 -0.17	0.05.05.1/
JEC: flavor-dependent		••	•	\sim 0.35 GeV
bottom	-0.29	-0.32	-0.34	
Modeling of perturbative QCD				
Ren. and fact. scales	-0.12 ± 0.12	-0.09 ± 0.07	-0.75 ± 0.20	
ME-PS matching threshold	$+0.13 \pm 0.12$		-0.12 ± 0.20	\sim 0.15 GeV
ME generator	-0.16 ± 0.14	-0.12 ± 0.08	-0.24 ± 0.20	
		_		
Modeling of soft QCD				
Underlying event Color reconnection	$+0.14 \pm 0.18 +0.16 \pm 0.16$	$+0.08 \pm 0.11 +0.01 \pm 0.09$	$+0.04 \pm 0.20 \\ -0.11 \pm 0.20$	
				-
Total systematic	0.59	0.48	1.22	

Main avatamatia una artaintia a

Top quark mass measurements at CMS

Kinematic phase space in MC models PRD 93(2016)2004 $\sqrt{s} = 8 \text{ TeV}, \ L = 19.7 \text{ fb}^{-1}$

- Different ME generators, hadronization models, UE tunes compared to CMS standard MC (MADGRAPH+PYTHIA6 with Z2* tune)
- Probing variables sensitive to color-(re)connection effects
- ► Following the standard lepton+jets strategy (selection criteria, kinematic fit, 2D likelihood procedure) → instead of correcting kinematic biases, studying them

Fair agreement between data and MC within statistical uncertainties

→ more data needed to further constrain model uncertainties

0 1 10 1 7 7 4 6

Color (re)connection effects

CMS PAS TOP-13-007

- Factorization the recoil contribution
- MC-to-date comparison for several Perugia 11 variations

$\sqrt{s} = 8 \text{ TeV}, \ L = 19.7 \text{ fb}^{-1}$

Color (re)connection model effects enhanced at low p_T , when there is no extra jet, and in the $t\bar{t}$ direction

Fragmentation modeling PRD 93(2016)2006

- Study of fragmentation in t̄ events with a charmed meson (J/ψ, D⁰,...) → modifying b fragmentation description of Z2* to better fit LEP data

⇒ Better MC-to-data agreement for Z2*LEP r_b

Fragmentation modeling

 $m_{\rm t}$ from $m_{\rm sv\ell}$ PRD 93(2016)2006

 $m_{
m t}$ from $m_{
m J/\psi+\ell}$ CMS PAS TOP-15-014 (2016)

Importance of a precise m_t determination

The electroweak fit and indirect measurement of mw

EPJC 74(2014)3046

The electroweak vacuum stability JHEP 1208(2012)098

From the Lagrangien parameters to the observables

mq mass:

Lagrangien parameter

- 1. Field quantification
- Gauge fixing
 → Feynman rules

$$\longrightarrow$$
 = $\frac{i}{\not p - m_q}$

3. Regularization \rightarrow loop integrals

- Renormalization
 → series of perturbative corrections
 - → As many mass definitions as
 - ⇒ As many mass definitions as renormalization schemes

Pole mass:

real part of the propagator singularity for each order of the perturbative theory

- invariant mass of a free particle
- $ightharpoonup \Delta \sim$ 200 MeV

MS, PS, MSR...masses:

- short-distance masses
- convenient to parameterize the Yukawa coupling to the Higgs boson

Monte Carlo generator definition:

- interpretation depends on how much MC simulations are based on QCD
- - \hookrightarrow can be perturbatively related to $m_{\rm t}^{\rm pole}$ NPPS 185(2008)220

The ideogram method

For each event, a likelihood to observe the event is calculated:

$$\mathcal{L}_{\text{event}}(x|m_{\text{t}}, f_{\text{t}\overline{\text{t}}}) = f_{\text{t}\overline{\text{t}}} \cdot P_{\text{t}\overline{\text{t}}}(x|m_{\text{t}}) + (1 - f_{\text{t}\overline{\text{t}}}) \cdot P_{\text{bkg}}(x)$$

where x is the set of variables which characterizes the event, $f_{t\bar{t}}$ is the fraction of $t\bar{t}$ events in the data sample, and $P_{t\bar{t}}$ and P_{bkg} the probability densities for $t\bar{t}$ and background events respectively

The probabilities are calculated as a weighted sum over all possible combinations from the kinematic fit:

$$w_i = \exp\left(-\frac{1}{2}\chi^2\right) \cdot w_{\text{btag}}$$
 with $w_{\text{btag}} = \prod_{j \in \text{jets}} p^j$

where the b-tag probability p^i can be either ϵ_l , $(1-\epsilon_l)$, ϵ_b , or $(1-\epsilon_b)$ depending on the hypothesized flavor of the jet (light or b-jet)

Considering the number of b-tagged jets n_{btag}, signal and background probabilities to observe a set of mass variables x_{mass} can be written as:

$$P_{\mathrm{t}\bar{\mathrm{t}}}(x|m_{\mathrm{t}}) = P_{\mathrm{t}\bar{\mathrm{t}}}(n_{\mathrm{btag}}) \cdot P_{\mathrm{t}\bar{\mathrm{t}}}(x_{\mathrm{mass}}|m_{\mathrm{t}}) \quad \text{and} \quad P_{\mathrm{bkg}}(x) = P_{\mathrm{bkg}}(n_{\mathrm{btag}}) \cdot P_{\mathrm{bkg}}(x_{\mathrm{mass}})$$

The tt signal probability can be expressed as:

$$P_{t\bar{t}}(x_{\text{mass}}|m_{t}) = \sum_{1}^{24} w_{i} \left(f_{cp} \cdot \int_{m_{\text{min}}}^{m_{\text{mass}}} dm' \cdot G(m'|m_{i}, \sigma_{i}) \cdot BW(m'|m_{t}, \Gamma_{t}) + (1 - f_{cp}) \cdot WP(m_{i}|m_{t}) \right)$$

The overall sample likelihood is calculated by combination:

$$\mathcal{L}_{\text{sample}}(\textit{m}_{\text{t}},\textit{f}_{\overline{\text{t}}\overline{\text{t}}}) = \prod_{i} \mathcal{L}_{\text{event},\textit{j}}(\textit{m}_{\text{t}},\textit{f}_{\overline{\text{t}}\overline{\text{t}}})$$

The analytical matrix weighting technique (AMWT)

- The top-quark mass is used as a constrain to close the kinematic system
- ► To determine a preferred value of m_t, a weight is determined as:

$$w = (\sum F(x_1)F(\bar{x}_2)) \cdot p(E_{\ell^+}^*|m_t) \cdot p(E_{\ell^-}^*|m_t)$$

where x_i are the Björken values of the initial state partons, F(x) is the parton distribution function, and $p(E^*|m_l)$ the probability of observing a charged lepton of energy E^* in the rest frame of the top-quark given a top-quark mass of m_l

- Each event is reconstructed 1 000 times drawing a random number for the jet momenta. The weight is averaged over all resolution samples.
- For each event, the m_t hypothesis with maximum average weight is taken as the reconstructed top-quark mass m_{AMWT}
- Using simulated tt̄ samples generated with m_t values between 151 and 199 GeV in steps of 3 GeV, a binned likelihood fit is performed for 100 < m_{AMWT} < 300 GeV</p>

The bi-event subtraction technique Combinatorial background estimation from data

- Pairing all jets in a given event X with all jets from a neighboring event Y
 - same jet multiplicity for both events
 - $ightharpoonup \Delta R > 0.5$ for all considered jet pairs
- All combinations jjb of 2 non-b-tagged jets and 1 b-tagged jets
 - ▶ non resonant background to W: j^Xj^Yb^X
 - wrong combination of b-tagged jets with W candidates: j^Xj^Xb^Y

The Gaussian Processes regression technique Shape estimation

Advantages

- non parametric method
- trained as a function of several variables simultaneously

Training

- ▶ point $\mathbf{u}_i = (x_i, m_{ti}, \mathsf{JSF}_i)$, value of the shape $f(\mathbf{u}_i) = f(x_i | m_{ti}, \mathsf{JSF}_i)$ \hookrightarrow training each GP shape with binned x distributions for several m_t and JSF values
- be degree to which the GP shape is allowed to vary between \mathbf{u}_i and \mathbf{u}_j determined by the correlation between $f(\mathbf{u}_i)$ and $f(\mathbf{u}_j)$
 - \hookrightarrow cov $(f(\mathbf{u}_i), f(\mathbf{u}_i))$ determined by a kernel function set by the user

