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DUNE 
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Measure νe appearance and νµ disappearance in a wideband neutrino 
beam at 1300 km to measure MH, CPV, and neutrino mixing parameters 

in a single experiment. Large detector, deep underground provides 
sensitivity to nucleon decay and supernova burst neutrinos.    

ND: See B. Bhuyan, 
S. Mishra talks  

Beam: See V. 
Papadimitriou talk    ND and Flux posters: 

A. Bashyal &  B. Gao 



DUNE Collaboration 
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890 collaborators from 154 institutions in 28 nations 
 

May 2016 



DUNE Far Detector 

•  40-kt (fiducial) liquid argon TPC at 4850L of SURF 
•  Four 10-kt (fiducial) modules 

•  First module will be a single phase LArTPC 
•  Modules installed in stages; modules probably will not be identical 
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See A. Himmel talk 

Getting from signals on wires to reconstructed 
events is non-trivial. See T. Yang talk.  

DUNE 10-kt 
module 



DUNE Timeline 
2017: Far Site 

Construction Begins 

2018: protoDUNEs at 
CERN 

2021: Far Detector 
Installation Begins 

2024: Physics Data 
Begins (20 kt) 

2026: Neutrino 
Beam Available 
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νe Appearance 

ETW: DUNE Oscillation Physics, Neutrino -- Latin America Workshop 6 

•  νe appearance amplitude 
depends on θ13, θ23, δCP, 
and matter effects – 
measurements of all four 
possible in a single 
experiment 

•  Large value of sin2(2θ13) 
allows significant νe 
appearance sample   
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Matter and CP Asymmetry 
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Matter asymmetry very 
important for long-baseline 

experiments! 

1300 km 
Charged-current coherent forward 
scattering on electrons: 

Electrons are 
present in matter 

while other leptons 
are not. 

•  CC process occurs for electron 
neutrinos only; muon and tau have 
only NC interactions with electrons 

•  Normal hierarchy: matter effect 
enhances appearance probability 
for neutrinos and suppresses it for 
antineutrinos (opposite for IH) 



Matter and CP Asymmetry 
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δCP=-90°, IH 
or 

δCP=-20°, NH 

Degeneracy between CP and matter asymmetry 
for 1st oscillation node at short baseline 



Matter and CP Asymmetry 
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Longer baseline breaks degeneracy between CP and matter asymmetry 
– 1300 km is a near optimal baseline for these measurements 



Oscillation Sensitivity Calculations 
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DUNE CDR: 

•  GLoBES-based fit to four FD 
samples 

•  Two neutrino beam line 
designs shown: optimization 
of beam design is ongoing 

•  GENIE event generator 
•  Reconstructed spectra 

predicted using detector 
response parameterized at 
the single particle level 

•  Order 1000 νe appearance 
events in ~7 years of equal 
running in neutrino and 
antineutrino mode 

•  Simple systematics treatment  
•  GLoBES configurations 

arXiv:1606.09550 
 

νe νe 

νµ νµ



MH & CPV Sensitivity 
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Width of band indicates variation among differing neutrino beam designs. 
(See poster by L. Fields for updated beam optimization) 

Exposure is 300 kt-MW-yr = 40 kt x 1.07 MW x (3.5ν+3.5ν) years. 
Includes simple normalization systematics and oscillation parameter variations. 

Mass Hierarchy CP Violation DUNE CDR: 



Oscillation Parameter Sensitivity 

Exposure (kt-MW-years)
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DUNE CDR: 

Exposure (kt-MW-years)
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δCP Resolution sin22θ13 Resolution sin2θ23 Resolution 

NuFit 1σ uncertainty  



Exposure (kt-MW-years)
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DUNE CDR: 

Interesting measurements will be made 
throughout the DUNE physics program!  

 Initial beam power: 1.07 MW at 80 GeV 
Planned upgrade to > 2 MW  

CP Violation (50% δCP) 
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DUNE CDR: CP Violation (50% δCP) 

Interesting measurements will be made 
throughout the DUNE physics program!  

 Initial beam power: 1.07 MW at 80 GeV 
Planned upgrade to > 2 MW  

1∘ θ23 resolution (θ23 = 42∘): 45 kt-MW-years 
 
Definitive MH determination (≥5σ for all 
values of δCP): 230 kt-MW-years
 
CPV at 5σ (δCP = -π/2): 320 kt-MW-years 
 
Reactor θ13 resolution: 850 kt-MW-years 



Systematic Uncertainty 
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DUNE CDR: 

•  CPV measurement statistically 
limited for ~100 kt-MW-years 

•  Sensitivities in DUNE CDR are 
based on GLoBES calculations in 
which the effect of systematic 
uncertainty is approximated using 
uncorrelated signal normalization 
uncertainties. 

•  νµ = νµ = 5% 
•  νe = νe = 2% 

•  Uncertainty in νe appearance sample 
normalization must be ~5% ⊕ 2% to 
discover CPV in a timely manner. Exposure (kt-MW-years)
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Proton Decay 
• Test of fundamental symmetries 

•  We (so far!) observe conservation of 
baryon number, but there is no 
known reason why this must be so 

•  Matter-antimatter asymmetry 
requires baryon number non-
conservation (Sakharov) 

• Well-motivated Grand Unification 
Theory models suggest proton 
decay may exist and be 
observable 
•  GUTs make specific predictions 

about proton decay modes and 
branching fractions – we can test 
these models 

ICHEP 2016: DUNE Physics Program 16 



Sensitivity to Nucleon Decay 
• Detector requirements 

•  Low background rate 
•  Cosmogenic background 

(primarily entering neutral 
kaons and neutrons) 
reduced by deep 
underground location 

•  Atmospheric neutrinos also a 
source of background 

•  High signal efficiency 
•  Precision tracking in LArTPC 

especially effective for 
modes with kaons, neutrinos, 
or complex final state 

•  Large exposure           
(detector mass × time) 
•  40-kt detector expected to 

run for 20+ years 

ICHEP 2016: DUNE Physics Program 17 

Simulated p→νK+ event:  

Automated reconstruction 

K+ 

K+ 

µ+ 

µ+ 

e+ 

e+ 

See G. Santucchi poster for more on nucleon decay reconstruction & K. Warburton poster for more on nucleon decay background  
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Simulated p→νK+ event:  

Automated reconstruction 
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See G. Santucchi poster for more on nucleon decay reconstruction & K. Warburton poster for more on nucleon decay background  



Sensitivity for pà𝝂K+ 
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DUNE will do well in decay modes with kaons, and modes 
with neutrinos or with complicated topologies.

Super K (2014) 

SuperK result: 
Phys. Rev. D 90, 
072005 (2014)    

DUNE staged: 
10 kt (5 year) + 30 kt 

DUNE 40 kt 

p→νK+ in DUNE: 

•  ~97% signal 
efficiency 

•  ~1 background 
event/Mt-year 

  



Neutron-antineutron Oscillation 
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Neutron-antineutron oscillation

• Beyond Standard Model |ΔB=2| process, sibling 
to proton decay. 

• Current limit τ > 2.7x10
8
 s (90% CL) from Super-

Kamiokande. 

• Signature in LArTPC is spherical cascade of πs 
with total E = ~2 GeV & p < ~300 MeV. 

• Potential for improvement in DUNE: 

• Large exposure. 

• Good spatial resolution. 

• Improved particle ID. 

• Low background rate.

GENIE simulation 
n n̄ → π+ π- 3π0

Phys. Rev. D 91, 072006 (2015)    



Neutrinos from Stellar Core Collapse 
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Image credit: A. Mezzacappa 

• More than 99% of energy in 
supernova burst is emitted 
in the form of neutrinos with 
energy 𝒪(10 MeV) 

• Basic physical model of 
SNB understood and 
confirmed by observation of 
SN1987a but many details 
remain to be understood 

• High-statistics observation 
of SNB neutrinos, with 
sensitivity to flavor 
components, of interest 
both for astrophysics and 
neutrino physics 



Supernova Signal in DUNE 
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Flavor composition as function of time: Energy spectra integrated over time: 

For 40-kt LArTPC, SNB @ 10 kpc, “Garching” model (Significant variation among models) 

Electron flavor dominant 
Allows mapping of neutronization burst, which is dominated by νe  



Supernova Neutrino Detection 
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SNB Neutrino Simulation 
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Simulated charged-current supernova νe event: 



Summary 
•  DUNE will address fundamental physics questions 

•  Baryon asymmetry (CP violation + nucleon decay) 
•  Grand unified theories 
•  Supernovae 

•  Long-baseline neutrino oscillation experiment in a broad band 
beam allows simultaneous measurement of mass hierarchy, 
CP-violating phase, and neutrino mixing angles 
•  Comparison to other oscillation channels allows unitarity test 
•  Sensitive to new physics affecting oscillation probabilities (see 

phenomenology talks later today) 
•  Deep underground location and precision tracking facilitates 

sensitivity to baryon non-conservation and supernova burst 
neutrinos 

•  DUNE physics program will produce interesting results at each 
stage of 20+ year operation 
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Thanks! 
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Lead, SD 



Additional Slides 
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Octant Sensitivity 
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(2014) 

(2014) 

DUNE CDR: 



MH Statistics 
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DUNE CDR: 



Proton Decay Sensitivity 
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DUNE (40 kt)
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Example “benchmark” decay modes, but many others will also be studied.


