Global & local inclusion in diversifying Physics

Managing the historical imbalances in the context of changes in global science
About 0.5% of CERN users are African Nationals
Major research stations located outside the club: change in global engagements

The largest radio astronomy observatory to be (co-) hosted by South Africa (70%) and Australia (30%) : meaning that two Global/Geographical South nations will be at the heart of managing and driving the project; and this will add a new dynamic to the nature and culture of global collaboration.

Calls have been made for the extension of an array of underground neutrino observatories in the Southern Hemisphere - and those, barring Australasia, are largely in the developing countries.

“Youth Dividend”: Potential for ambitious young scientist to address “manpower” challenges that many HEP collaborations face.
Global science is changing: New developments that will foster inclusion

The terrain has changed because the evolution of science (Physics in particular) means that even highly resourced nations (US) or a group of nations (EU), cannot launch large global scientific enterprises without the inclusion of other nations that historically have not been involved.

Challenges

tendencies to "other" and patronize:
• Some countries need to deal with internal exclusionary legacies: eg Apartheid SA had regulations that restricted the majority African population from studying mathematical sciences.
• Taking facts for granted: most people don’t know that S Mandelstam was educated in South Africa

Travel restrictions/Visa’s present a major challenge and can lead to exclusion

Scientific colonialism in the context of Global South engagements: The Chile effect