

CULTASK, Launching Axion Experiment in Korea

Woohyun Chung

Center for Axion and Precision Physics Research (CAPP) Institute for Basic Science (IBS)

August 7th 2016

ICHEP 2016 Satellite (IBS), Chicago

OUTLINE

• OVERVIEW

- Axion & Dark Matter
- CAPP's Axion programs
- R&D projects
- CULTASK (CAPP's Ultra Low Temperature Axion Search in Korea) 2016 with Two BlueFors DRs
 - Cavity Development & RF Testing
 - Engineering Run (complete RF chain) in 2016

• Plans beyond 2016

- Low Vibration Pads (LVP) with Four more DRs in 2016
- Major improvements by 2018

Summary

Axion & Dark Matter

- Peccei and Quinn (1977) postulated an elegant solution by adding a new global symmetry to resolve the Strong CP Problem in Standard Model
- Axion is an excellent (and attractive) dark matter candidate
 - Pseudo Goldstone Boson
 - No Electric Charge
 - Small Mass (1µeV<m_a<10meV)
 - Extremely Weakly Interacting
 - Local Halo Density of 0.45 GeV/cm³
 - $\beta \sim 10^{-3} \rightarrow Q_a \sim 10^{-6}$
- Detection scheme by P. Sikivie (PRL 51:1415 1983) : Haloscopy
 - Axions will convert to photons in a strong magnetic field

a

$$\gamma$$

 $L_{a\gamma\gamma} = g_{\gamma} \frac{\alpha}{\pi} \frac{a}{f_a} \vec{E} \cdot \vec{B}$

Overview

Lead: Woohyun Chung

2 DRs installed and operational Complete RF chain (w/ DAQ) soon 4 more frig. in Nov. at LVP

CULTASK

CAPP/CAST

ARIADNE

Large Toroid

Lead: Lino Miceli First installation at CAST

Lead: Yunchang Shin NMR based R&D in progress

Lead: Beongrok Ko Requires big collaboration R&D in progress

CULTASK

P. Sikivie's Haloscope:

Axion Conversion Power (~10⁻²⁴W): $P_{a \to \gamma\gamma} = g_{a\gamma\gamma}^2 \frac{\rho_a}{m_a} B^2 V C_{mnp} \min(Q_L, Q_a)$ Signal to Noise Ratio: $SNR = \frac{P_{signal}}{P_{noise}} = \frac{P_{a \to \gamma\gamma}}{k_B T_{syst}} \sqrt{\frac{t_{int}}{\Delta f_a}}$ Scan rate: $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

Cryogenics

<100mK Prof. Hyoungsoon Choi of KAIST

High Field SC Magnet 25T and then 35T or 40T BNL (HTS Technology) Design

SQUID Amplifier

Outsourced Research from KRISS

High Q Tunable Cavity

Superconducting Coating Prof. Jhinhwan Lee of KAIST

Refrigerators & SC Magnets

BF3:RF and Cavity test

BF4:Complete RF readout with DAQ + HEMT + 10cm Cu

cavity + FTS

NbTi

8T-15cm

BF5

BF6

DRS-1000

JANIS-He3

HTSHTS25T-10cm21T-5cmFrom BNLSuNAM

LTS 12T-35cm Oxford

HTS 26.4T-3.5cm SuNAM - WR

RF Room

LVP

NbTi

8T-10cm

Superconducting Cavity

Process for manufacturing of superconducting cavity

R&D of recipe for Nb₃Sn or FeSe film on small substrate
1. Molecular beam epitaxy system (Growth of Nb₃Sn film)
2. LEED & RHEED (Characterization of Nb₃Sn film)
3. Low temperature UHV-STM (Superconductivity)

Application of growth of Nb₃Sn film on cavity

- 1. Molecular beam epitaxy system (Growth of Nb₃Sn film)
- 2. Radiative thermal heater (Superconductivity)
- 3. 4 probe measurement (Superconductivity)

Anodized Al oxide for vortex pinning

- 1. Chemical etching system (Growth of AAO surface)
- 2. Atomic force microscope (Characterization of AAO surface)

By Won-Jun Jang

Superconducting Cavity

<u>청자색 내부면을</u> 거울 수준 (요철 1um 미만) polishing 처리. 눈에 보이는 수준의 가공 요철, 단차, 주름 등은 일체 없어야 함. Polishing에 의해 생기는 약간의 완만한 굴곡(범위 10mm이상에서 높낮이 0.1mm미만)은 허용.

* email: jhinhwan@kaist.ac.kr

SolidWorks 학생용 사용권 교육용에 한함

Two BlueFors Dilution Refrigerators were delivered, installed and are operational now!

2016

ICHEP 2016 Satellite (IBS), Chicago

	BF3	BF4
Model	BlueFors LD400	BlueFors LD400
Magnet	None	8T (AMI), 12cm ID
RF lines	24	8
DC lines	72	72
Cool down to <10 mK	20 ~ 24 hours	40 ~ 48 hours
Base temp at MXC	9 mK	7 mK w/ SC magnet
MXC temp w/ Load	11 mk w/ Al cavity (4cm id) and HEMT amp	30 mk w/ 10 kg OFHC copper support structure and cavity + HEMT amp + Network Analyzer + Piezo Controller

BF4

OFHC Support Structure and Frequency Tuning System

- Cu Cavity of 10cm OD
- Modular design
- Sapphire tuning rod, 1cm OD
- Rotational piezo for tuning
- Linear piezo for antenna
- Piezo holder thermally linked to 1K plate

High Q-Factor Cavity Development:

- Variety of samples (OFHC Cu, 5N Al, 6N Al with sizes and different types of lids were tested
- Beginning to use Annealing Furnace to investigate annealing temp. and duration
- Superconducting Al:
 - Al becomes superconducting below 1.2K
 - Q-factor grows to >200,000 for TM010
 - TE011 mode (no contact problem: Fritz's suggestion)
 Q-factor : ~2M at ~800 mK and ~20M at 11 mK
- Split cavity < --- > diffusion bonding
 - Q-factor of cavity cut in half stays the same verified
 - It could eliminate contact problem between lids and wall
 - Will be useful for superconductor coating

Complete RF chain with DAQ

- New Lab space in
 - KAIST Munji Campus Creation Hall (RF room) completed
- Two BlueFors DRs (one w/ 8T SC magnet)
 - RF Room infrastructure done (esp. electricity and chiller)
 - Delivered and installed: end of Feb.
 - Design 10 cm cavity (~2.5 GHz) and support structure with frequency tuning system
 - Cryo RF noise figure measurement
 - Complete RF chain set-up with DAQ
 - Fake axion signal injection (blind test?)
 - Take reasonable sensitivity DATA in 2016
- 4 More DRs and 2 magnets in Oct. (LVP)

Plans beyond 2016

Axion Lab with 7 Low Vibration Pads in KAIST Munji campus

Plans beyond 2016

- State of the Art Axion Research at CAPP/IBS in Korea
- Major R&D Efforts
 - Higher B Field: HTS (21T, 25T...) + LTS (12T-35cm)
 - Higher Q Factor with B Field: Factor of >10 Improvement
 - Larger Volume: Toroidal Cavity
 - R&D for Higher Frequencies (>10 GHz)
- CULTASK 2016 ready to build a complete experiment
 - Cavity R&D and Cryo-RF testing
 - Could reach close to QCD Axion Sensitivity soon!
- Major improvement in Axion Experiment as early as in 5 years

Thank You For Your Attention!