

ICHEP 2016, Chicago

Theme for Center for Underground Physics (CUP)

1. What is dark matter?

- Center for Underground Physics
- 2. Are neutrinos Majorana particles?
- 3. What created the asymmetry in the Universe?
- 4. Extreme rare phenomena in energy region 10 eV 100 MeV

Organization of CUP

Members:

- 1 Director
- 2 Group Leaders
- ~25 Research Fellows
- 6 Technicians
- 3 Administrators
- ~ 10 Adjunct Professors
- ~25 Adjunct Students.

Minimum depth: 700 m / Access to the lab by car (~2km)

Laboratories

Current Ground Lab.

Headquarter (2018-)

New underground lab. (2019-)

1. Double Beta Decay - AMoRE

Search for Neutrinoless double beta decay (0vbb)

- Observation of 0νββ will confirm
 - Neutrinos are Majorana particles and have Majorana masses.
 - Lepton number non-conservation.
- Observation of 0νββ will support more on
- $m_{_{D}} \gg \frac{m_{_{D}}}{m_{_{N}}}$

- See-Saw model of the neutrino mass.
- Leptogenesis to account for the baryon asymmetry of the universe.

How to confine neutrino mass with Onbb

If discovered with a measurement of half-life, then

$$T_{1/2}^{0n} \rightarrow m_{bb}$$
 by $\left[T_{1/2}^{0n}\right]^{-1} \propto m_{bb}^{2}$

Current limit is 10^{26} years.

- → 100 kg ¹³⁶Xe has less than 3 events per year.
- → Need extremely low backgrounds with good energy resolution.

AMoRE (Advanced Molybdnum Rare-decay Experiment)

Based on Scintillating Bolometer: $(^{40}\text{Ca},X)^{100}\text{MoO}_4 + \text{MMC}$

Photon sensor @ top

Phonon sensor @ bottom

- Phonon detector → High Energy Resolution
- $Q = 3.04 \text{ MeV } \& \text{ Heat vs Photon } \rightarrow \text{Low Background.}$
- 10% natural abundance → Reasonable Cost

Phases of AMoRE Project

 $^{40}Ca^{100}MoO_4\\$

~ 1.5 kg

AMoRE Pilot

 $^{40}Ca^{100}MoO_4$

~ 5 kg

AMoRE-I

(40Ca,X)100MoO₄
200 kg
AMoRE-II

ckky : counts/ (keV kg year)

	AMoRE-Pilot	AMoRE-I	AMoRE-II
Crystal Mass (kg)	1.5	5	200
Backgrounds(ckky)	10-2	10-3	10-4
T _{1/2} (year)	$1.0x10^{24}$	$8.2x10^{24}$	8.2×10^{26}
m _{bb} (meV)	380-719	130-250	13-25
Schedule	2015-2016	2017-2018	2020-2022

AMoRE Sensitivities

Aim at "Zero Background" experiment in the region of $0\nu\beta\beta$ signal. AMoRE will cover inverted mass hierarchy region.

Mounting detectors in pilot exp. at Y2L

Preliminary results on AMoRE-pilot run

Vibration noise from Pulse Tube limits

Pulse shape discrimination power & energy resolution.

→ Try to detach Pulse Tube and install damping system.

Simulation for AMoRE-I setup

• ²²⁸Th backgrounds

Major Background Sources

Material	Source	Activity (mBq/kg)	Background (10 ⁻³ ckky)
CMO	²²⁶ Ra	65	0.015
	²²⁸ Th	50	0.72
Vikuiti	²¹⁴ Bi	< 0.91	< 0.119
	²⁰⁸ Tl	< 0.48	< 0.177
Copper	²²⁸ Th	< 0.25	< 0.25
Accidentals	100 Mo		0.12
Total			<1.6

Crystals for AMoRE-II – studied by KNU

There are Mo crystals excellent for AMoRE-II experiment in addition to CaMoO4.

Crystal	Energy Yield @ 10K	density	Mo Fraction	Exp
CaMoO4	100	4.34	0.49	AMoRE-1, 2(?)
ZnMoO4	20	4.37	0.436	LUMINEU
Li ₂ MoO4	5	3.03	0.562	LUMINEU, AMoRE-II(?)
PbMoO4	10	6.95	0.269	AMoRE-II(?)
$Na_2Mo_2O_7$	140	3.62	0.558	AMoRE-II(?)

We will decide the crystal by end of 2017.

International Races for 0νββ

Sensitivity of KIMS-LT experiment – Hyunsu Lee

Goal to have the most sensitive detector for the low-mass dark matter

2. Sterile neutrinos search – NEOS

Hints for light sterile neutrinos

All these anomalies indicate ~ eV mass right-handed sterile neutrinos.

NEOS (Neutrino Experiment for Oscillation at Short baseline)

- Possibility to search sterile neutrinos at the commercial power plant.
- Unique experiment with 3 baseline at the same time,
 - -- NEOS (25m), RENO-near(~250m), RENO-far(1300m)

Experiments	Thermal Power	Baseline	Country
PROSPECT	85 MW	7 - 12 (near), 15 - 19 (far) meters	US
Stereo	57 MW	8.9 - 11.1 meters	France
CHANDLER	60 MW	~ 6 meters	Belgium

Detector Constucted & Installed.

Construction and Installation at Tendon Gallery finished on Aug. 6th, 2015

Preliminary results

- First result after reactor neutrino anomaly.
- Rejected the best-fit parameter for the anomaly
- Further analysis with Daya Bay and RENO antineutrino spectra.

Ultimate reactor neutrino spectra?

- A new ~ 2ton size detector with photocathode coverage > 70% at shorter baseline (~15m) can have an energy resolution better than 3% and high statistics (>10000 events/day)
- Tendon Gallery may be extended in a new reactor under consideration in Korea or China for complete burn-up measurements.

A new underground laboratory at Handuk mine

After extensive study, we finally decided to build a new underground lab at an active iron mine, Handuk.

- For 2018 Winter Olympic, construction of a high-speed train between airport to east has started.
- ~ 3 hour from Incheon airport to Handuk mine.

- Two ways to access to the entrance of IBS tunnel, ramp way and vertical shaft.
- 730 meter long tunnel will be constructed and lab at the end.

Concept of space in the Underground Lab

	Room Name	Area	Location
1	DBD Exp. Room	170 m²	Hall A
2	Control Room for DBD Exp.	100 m ²	Hall A
3	1st DM Exp. Room	100 m ²	Hall A
4	Control Room for 1st DM Exp.	100 m ²	Hall A
5	2nd DM Exp. Room	100 m ²	Hall B
6	Control Room for 2nd DM Exp.	50 m ²	Hall B
7	HPGe Room	100 m ²	Hall B
8	Clean room (50m2 x 2)	100 m ²	Hall B
9	Crystal Growing Room	100 m ²	Hall B
10	DI Water Room	50 m ²	Hall B
11	Copper Electroforming Room	100 m ²	Hall B
12	1st and 2nd RRS Room	100 m ²	Aux. space
13	PCW Room	100 m ²	Aux. space
14	Gas Storage Room	100 m ²	Aux. space
15	Storage and Machine Shop	100 m ²	Aux. space
16	Electric Power Room	100 m ²	Aux. space
17	Multipurpose RoomX2	100 m ²	Aux. space
18	Bath Room (20m2 x 2)	40 m²	Aux. space
19	Machinary Control Room	30 m²	Aux. space
	Total	1740 m²	

[Relocation scheme of lab space]

We consider the concept of watertank(D: 10m, H: 10m) for LT detectors

CUP Infrastructure

- For the next generation neutrino and dark matter programs, CUP is developing ultra-low background technology and infrastructure.
- Ultra-low background technology can be realized with a combination of low background measurement and purification with the ultra-sensitive sensor.
- CUP is unique to have all the technique in a center.

<u>Ultrapure crystals – Purification & growing crystal</u>

- The center is based on crystal detector and forming a facility for crystal growing.
- Goal: develop the technology for ultra-low background crystals for experiments.

Czochralski furnace

Kyropoulos furnace

Sublimation facility

Chemistry Lab.

Low temp sensors and detectors

ICP RIE: Dry etching Nb superconducting coil

Sputtering system: Au:Er, Au, Nb, MoGe,

Magnetic property measurement system: Au:Er characterization

Ultra-low radioactivity measurements

- To reach the required low radioactivity in the detectors, we need to develop techniques to measure such low radioactivity in materials.
- Developed Techniques
 - 1. HPGe gamma-ray detectors.
 - 2. ICP-MS analyzer
 - 3. Alpha counter
 - 4. Radon detector

Ra: 0.01mBq/kg level

U, Th down to ppt level

R>0.0001 alphas/cm²/hour

Radon level down to 5mBq/m³

Summary

- In addition to Dark Matter Search program, neutrino physics programs are actively pursued at CUP.
- AMoRE project will cover inverted mass hierarchy region for a discovery and will lead the ton-scale 0nbb with international collaboration.
- NEOS gives more stringent limits to the reactor neutrino anomaly, and rejects the best-fit parameters.
- CUP will be the Center for the Ultra-low Background Techniques. For the planned projects, we need a new underground laboratory, which will be the basic facility for the fundamental, great physics.

If you are interested in CUP researches, join to CUP!!

Job announcement in Aug. – Sep. this year !!

http://www.ibs.re.kr

http://cupweb.ibs.re.kr

Low temperature detector technique

"Calorimetric measurement of heat signals at mK temperatures"

Energy absorption Temperature

Choice of thermometers

- Thermistors (NTD Ge, doped Si)
- TES (Transition Edge Sensor)
- MMC (Metallic Magnetic Calorimeter)
- etc.

Metallic magnetic calorimeter (MMC)

Magnetic material Au:Er(10~1000ppm)

- weakly-interacting paramagnetic system
- metallic host: fast thermalization ($\sim 1 \mu s$)

$$\delta E \to \delta T \to \delta M \to \delta \phi$$

5 mT
$$\rightarrow \Delta \epsilon = 1.5 \,\mu\text{eV}$$

1 keV $\rightarrow 10^9 \,\text{spin flips}$

AMoRE-II(200kg) Shield and Cryostat

- One of conceptual plans
- Water tank for active shield (similar design and size of LUX and XMASS)
- Cryostat submerged in the pure water.
- This setup requires lots of R&Ds,
- and desperately requires wider, higher, and hopefully deeper lab space.

Radon reduction system

- Imported from Czech and installed in Aug. 2015.
- 120 m³/hour of Rn free air (50 Bq/m³ \rightarrow 5mBq/m³) will be supplied.
- Important to prohibit Radon contamination during detector assembly
- Korean company will try to develop the technique.
- Rn-free air will be supplied to the most sensitive clean room.

AMoRE schedule

Current best results for $0v\beta\beta$

Isotope	Exp	$T_{1/2}(10^{24}Y)$
⁴⁸ Ca	ELEGANT VI	>0.058
⁷⁶ Ge	GERDA-I	>21
⁸² Se	NEMO-3	>0.32
⁹⁶ Zr	NEMO-3	>0.0092
¹⁰⁰ Mo	NEMO-3	>1.0
¹¹⁶ Cd	Solotvina	>0.17
¹³⁰ Te	CUORE	>2.8
¹³⁶ Xe	EXO-200,KamLAND-Zen	>19
¹⁵⁰ Nd	NEMO-3	>0.018

Background Simulations for AMoRE-I

Internal			Concentration		Rate (10	Rate (10 ⁻³ counts/keV/kg/yr)				
			(mBq/kg)	Time	α	β events	β with cut			
1	THE RESIDENCE OF THE PARTY OF T	Pb210	7.3	42.66	17					
	Internal CMO	U238	0.98	34.25	5.5					
		Ra226	0.065	516.38	1.16	0.15	0.015			
		Th228	0.050	698.91	0.546	27.3	0.72			
		Bi211	0.470	68.20	5.53					
Near		Bi214	<0.91	2.34E+04	9.41	0.846	0.119			
CMO	Vikuiti	TI108	<0.48	4.68E+04	3.68	0.396	0.177			
	CMO supporting	Ra226	<0.16	8484	0.0146	0.0022	0.0022			
	copper frame	Th228	<0.25	5684	0.0170	0.2556	0.2542			
	SC lead shield	Ra226	1 ppt	9253		0.0029	0.0029			
	SC lead shield	Th228	1 ppt	30354		0.0079	0.0079			
	Inner lead plate	Ra226	1 ppt	1465.8		0.007	0.007			
G	inner lead plate	Th228	1 ppt	1182.8		0.009	0.009			
	Cu Plate	Ra226	<0.16	8746.0		0.0013	0.0013			
	Cu Flate	Th228	<0.25	6077.6		0.0023	0.0023			
	G10 fiberglass	Ra226	2.16×10 ⁴	2.43E+04		0.0026	0.0026			
	GTO Tiberglass	Th228	5.03×10 ⁴	2.50E+04		0.0064	0.0064			
	Stainless Steel	Ra226	<0.2	5.26E+06		0.0049	0.0049			
	Starmess Steel	Th228	<0.1	2.55E+07		0.0057	0.0057			
	Total				42.86	29.00	1.34			

Total backgrounds < 1.34x10⁻³ ckky.

Expect zero backgounds for AMoRE-I.

Strategy for AMoRE-II

- Crystallization is very delicate technique.
- CUP is purchasing 120 kg of ¹⁰⁰Mo powder from ECP company directly and will have all the material until 2018.
- CUP will develop purification and crystal growing techniques with a collaboration with Russian researchers and institutes.
- AMoRE-II is the largest DBD experiment fully approved, and will reach inverted mass region first !!
- If not detected at that region, then go further with ~ ton scale exp.

Crystal Experts related with AMoRE projects

- Dr. Shlagel, Institute for Inorganic Chemistry, Novosibirsk, Russia
- Dr. Galashov, Novosibirsk State University, Russia → will set up new tech in CUP
- Dr. Kornoukhov, IHEP, Moscow, Russia
- Dr. Ren, SICCAS, China
- Dr. Danevich, INR, Ukraine
- Prof. Hongjoo Kim, Kyungpook National University
- TPS company in Korea.

World-wide dark matter search status

3. KIMS-LT Project

- Scintillating Crystal @ 10-20 mK
- Phonon vs Light will separate nuclear recoil signal.
- Technology developed for AMoRE experiment

Phonon collector film on bottom surface

200g CaMoO₄

Light detector
2 inch Ge wafer + MMC

MMC : Metallic Magnetic Calorimeter

Phonon and Photon signals

at KRISS (over-ground) lab

Need to optimize the separation at low energy.

Low energy spectrum

Strategy for low-mass dark matter search

CUP (Center for Underground Physics)

Energy resolution with outside source

- Pulsed Tube Cooler generates vibrational noise.
- Energy resolution 14 − 32 keV FWHM @ 2.6 MeV.

Running at Y2L now....

- The dilution fridge reaches 8 mK with 250kg lead attached.
- We are trying to reduce the vibrational noise.
 - High frequency noise: reasonably low.
 - Low frequency noise: should be improved. We are working on this!

Purification for XMoO₄ crystals.

- ¹⁰⁰MoO3 powder by Russia: ²³²Th, ²³⁸U < 1 ppb
- ¹⁰⁰MoO3 powder will be delivered until 2019.
- We will purify ¹⁰⁰MoO₃ powder by sublimation + coprecipitation, or recrystallization method.
- Develop the purification techniques with 99.95% ^{nat}MoO₃ powder (0.2 ppb of ²³²Th and 3.5 ppb of ²³⁸U)
- Purified powder will be measured by ICP-MS (10 ppt sensitivity for ²³²Th and ²³⁸U now).
- Ra reduction will be confirmed by Ba measurement.
- XMoO₄ crystal growing techniques are being developed.

Sterile Neutrino Search - NEOS

- Sterile neutrinos right-handed neutrinos
- Sterile neutrinos maybe Warm Dark
 Matter
- Nothing is known about the masses. Maybe very light (m_n <<1MeV) or very heavy (m_n >>10¹⁰GeV)
- Sterile neutrinos may be identified since the active neutrinos can oscillate to sterile neutrinos (disappearance experiment) or again oscillate to active neutrinos (appearance experiment).

MC Tuning - γ and β sources

NEOS Detector

- Volume of Liquid Scintillator (LS) is ~ 1000 L
- Mixture LS: LAB based + DIN based (9:1)
- 0.5 % gadolinium is loaded.

- 8" photomultiplier (PMT)
- 38 PMTs in mineral oil
 - Borated polyethylene (10 cm)
- B-PE shields neutrons produc ed at lead.
- 10 cm lead shield for gamma
- 4π muon detector for veto (except bottom)
- Plastic scintillator
- 2" or 5" PMTs

Mention et al., PRD 83, 073006 (2011)

					l				1					
		2014	2015	20	16	2017	2018	20	19	2020	2021	2022	2023	2024
Infr a	Y2L-A5		Oper.	Op	er.	Oper.	Oper.							
	IBS-ARF			Des	ı Jign I	Constrution				Operation				
	Low Bkg. Facility				Т	Test Experiment			Operation					
DM Exp.	KIMS-NaI		Data 1	takiı	ng									
	KIMS-LT					Test Experiment				Data taking				
DBD Exp.	AMoRE-10			Da	ta 1	taking								
	AMoRE-200									Da	ata taki	ng		

Which isotope for *Onbb* experiment?

Half-lifves depends on phase factor and matrix element.

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left(\frac{m_{\beta\beta}}{m_e} \right)^2$$
 Half-life Nuclear Neutrino Measured Matrix Element Mass

$$\begin{split} m_{bb} &= U_{e1}^2 m_1 + U_{e2}^2 m_2 + U_{e3}^2 m_3 \\ T_{1/2}^{0/n} &\longrightarrow m_{bb} \end{split}$$

G and M has anti-correlation.

→ Generally no single isotope is preferred.

