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Calculating the running of the 
Higgs coupling tells us that we 
seem to be in a sweet spot 
between stability and instability – 
metastability.

How Stable Is Our Vacuum?



At high energies, the Higgs self-coupling becomes negative, 
opening the possibility of vacuum tunnelling.
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Quantum Tunneling

Standard 1+1 Schrodinger tunneling exactly soluble. Recall 
tunnelling probabilities exponentially suppressed.
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Euclidean Perspective
Rotate problem to imaginary time:

A classical particle moving in imaginary 
time has kinetic energy equal to the 
potential drop, so the amplitude |T|2 now 
looks like the action integral for this 
classical motion.
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Euclidean Trick

Generally, to compute leading behaviour of a tunneling 
amplitude take action of a classical particle moving in an 
inverted potential. The particle rolls from the (now) unstable 
point to the “exit” and back again – a “bounce”.







The action of this bounce gives the exponent in the amplitude 
of the wavefunction – a nice way of computing tunneling 
probability.



Coleman Bounce
Coleman described this in field theory by the Euclidean 
solution of a bubble of true vacuum inside false vacuum 
separated by a “thin wall” (cf the Euclidean tunneling)









We gain energy from moving to true vacuum, but the 
bubble wall costs energy
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Euclidean Action
Amplitude determined by action of Euclidean tunneling 
solution: “The Bounce”
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Coleman
Since the bounce is a solution to eqns of motion, it should 
be stationary under variation of R:

Tunneling amplitude:



(Notice, R is big, so justifies use of the “thin wall” approximation.)
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Coleman de Luccia (CDL)

Vacuum energy gravitates – e.g. our current universe is 
accelerating – so we must add gravity to our picture.

Coleman and de Luccia showed how to do this with a 
bubble wall.

o  The instanton is a solution of the Euclidean Einstein 
equations with a bubble of flat space separated from dS 
space by a thin wall. 
o  The wall radius is determined by the Israel junction 
conditions
o  The action of the bounce is the difference of the action 
of this wall configuration and a pure de Sitter geometry.

Coleman and de Luccia, PRD21 3305 (1980)



The universe is complex – so how dependent are our 
results on the assumptions of homogeneity and isotropy? 
Phase transitions in nature are more “dirty” – how does 
that affect modelling?



Tweaking CDL
The bubble of true vacuum has a spherical symmetry, so we 
can add a black hole at “minimal expense”!
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Geometry Bubble

Straightforward to find solutions. Israel junction conditions 
determine the equation of motion of bubble wall with the 
black hole.
In each case we have to calculate the difference between 
the background black hole action and the effect of the 
bubble.
Need to deal with conical singularities (sometimes).
The general action with a black hole on each side is (details 
vary with Lambda):

A more general Thin Wall bubble



General Bounce
•   The general solution has a black hole inside the 

bubble (remnant) and a mass term outside 
(seed). 

•   The solution in general depends on time, but for 
each seed mass there is a unique bubble with 
lowest action.

•   For small seed masses this is time dependent – 
a perturbed CDL – with no remnant black hole.

•   For larger seed masses this is static and has a 
remnant black hole.

•   For a special Mcrit, there is a static bubble with 
no remnant.

•   Large range of solutions with B<BCDL



Main change is the value of lambda on each side, this changes 
the action ratio surprisingly little.

Generic thin wall Tunneling
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Black holes can also evaporate – so we must check which 
process wins. Compare the evaporation rate:



to our calculated tunneling rate 
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Plot shows that evaporation (perturbative) is much stronger 
than decay (nonperturbative) until the black holes are very 
small. 

Decay NOT an issue for astrophysical black holes.

Primordial black holes have a temperature above the CMB, 
so these do evaporate over time. Eventually, they become 
light enough that they hit the “danger range” for vacuum 
decay and WILL catalyse it.

For thin wall, parameter values push credulity – however – 
provide proof of principle.

Primordial Black Holes
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Thin to Thick wall

The main uncertainty in the potential is due to the uncertainty of the top quark
mass. The potential has a fairly smooth shape which can be computed by direct
numerical integration of the ��functions [17]. Since we are interested in scanning
through a range of potentials, and exploring the impact of BSM and quantum gravity
corrections, it is expedient to model the potential analytically by fitting to simple
functions with a small number of parameters. Although two-parameter fits have been
used before [5, 29, 30], we use here a three parameter model,
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which gives a much better fit over the range of (large) values of ⇤ that are relevant
for tunnelling phenomena. (See figure 1.)

Since the value of ⇥e� at energies around the Higgs mass is accessible to exper-
imental particle physics, we can fix ⇥e� at the lower end of the range with some
confidence. This leaves two fitting parameters, ⇥� and b. We shall explore the de-
pendence of our results on both of these parameters, thus our conclusions can be
incorporated into more general potentials, including non gravitational BSM correc-
tions.

At very high energies, apart from BSM physics, we may have to contend with
the e�ects of quantum gravity. We adopt the ‘e�ective field theory’ approach, and
add extra polynomial terms to the potential which contain the mass scale of new
physics, in this case the Planck mass [37–39]
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Adding extra terms to the potential can alter the relationship between the original
parameters in ⇥e� and the particle masses. This is one reason why we will give results
in terms of the parameters such as ⇥�, rather than top quark or other particle masses.
It is also easier to see how sensitive (or robust) our conclusions are to the shape of
the potential.

2.2 The “CDL” instanton

Although Coleman and de Luccia concentrated on the gravitational instanton repre-
senting a bubble with an infinitesimally thin domain wall, the CDL instanton is also
a good approximation to a wall of finite thickness, as the Israel equations are simply
a leading order approximation for a thin, but finite thickness, wall [40, 41]. As we
alter the parameters in the potential, the wall can become very thick, to the extent
that the Higgs may not even reach the true vacuum in the bubble interior. The key
feature of the CDL instanton is however the O(4) symmetry, therefore we refer to
an O(4) symmetric configuration of the Einstein-Higgs system that has a bubble of

– 3 –

First pass indicates a problem, so 
tackle in detail for a realistic Higgs 
potential. Idea is to scan through 
parameter space (beyond standard 
model) to see how robust result it.
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Fitting the Potential
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Thickening the wall increases the effectiveness of the 
instanton – the primordial black hole will hit the danger 
zone much sooner, and the decay will proceed rapidly.
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Primordial black holes start out with small enough mass to 
evaporate and will eventually hit these curves.

Can view as a constraint on PBH’s or (weak) on 
corrections to the Higgs potential.

Small black holes also possible in theories with Large Extra 
Dimensions.

(but the branching 
ratio seems to drop
with D – shown here 
for thin wall)
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Summary

§  Depending on higher energy physics, the Higgs 
vacuum may be unstable.

§  We can construct an instanton to describe the 
decay process – even including gravity.

§  Tunneling amplitude significantly enhanced in the 
presence of a black hole – bubble forms around black 
hole and can remove it altogether.

§  Very efficient for small black holes, so either they 
don’t exist – or the vacuum is stable.


