Search for Supersymmetry with Jets and Missing Transverse Momentum in pp Collisions at 13 TeV at CMS

Francesco Pandolfi ETH Zürich

on behalf of the CMS collaboration

ICHEP16 Chicago, 04.08.2016

The Compact Muon Solenoid

Particle Flow Event Reconstruction

Jets = clustered particles (anti- k_T , R=0.4), E_T^{miss} = vectorial sum of all particles p_T H_T = scalar sum of jet transverse momenta, H_T^{miss} = ME_T with jets

Looking for SUSY in Hadronic Final States

- Aiming for direct production of gluinos and squarks
 - Strong production \rightarrow high σ
- Largest BR to SM quarks + LSP
 - Many jets/b-jets
 - High ET^{miss}: scan the **tails**
- **Different** models \rightarrow different topologies
 - Need to be sensitive to many possible final states

Some typical hadronic SUSY events:

Four Independent Searches

Historically, four CMS all-hadronic SUSY searches:

Common strategy:

veto leptons look for lots of jets and lots of E_T^{miss}

Four Independent Searches

Historically, four CMS all-hadronic SUSY searches:

Common strategy:

veto leptons look for lots of jets and lots of E_T^{miss}

The Strategies at a Glance

♦ H_T and H_T^{miss}

"A canonical jets+E_T^{miss} search"

Search variable: HTmiss

Binned in jet and b-jet multiplicity (4×4):

N_j: 3-4, 5-6, 7-8, 9+ **N**_b: 0, 1, 2, 3+

In each of the 16 jet multiplicity regions bin in H_T and H_T^{miss} :

The Strategies at a Glance

Search variable: M_{T2} ('stransverse mass', E_T^{miss}-like)

Binned in $H_{T\!,}~N_{j}$ and N_{b}

H_T: 200, 450, 575, 1000, 1500+ GeV N_j: 1, 2-3, 4-6, 7+ N_b: 0, 1, 2, 3+

In each ($H_T \times N_j \times N_b$) region, look at tails of M_{T2}

"Optimized for pair-produced new physics with WIMPs"

Francesco Pandolfi

The Strategies at a Glance

Search variable: H_T^{miss}

Trigger and preselection based on α_T variable

Require leading jet with $p_{T,1} > 100 \text{ GeV}$

Depending on subleading jet, classify as:

symmetrical ($p_{T,2} > 100 \text{ GeV}$) asymmetrical ($40 < p_{T,2} < 100 \text{ GeV}$) monojet ($p_{T,2} < 40 \text{ GeV}$)

Binned in $H_{T,}$ N_{j} and N_{b}

H_T: 200, 250, 300, 350, 400, 500, 600, 800+ GeV Nj: 1, 2, 3, 4, 5+ N_b: 0, 1, 2, 3+

In each ($H_T \times N_j \times N_b$) region, look at **tails** of H_T^{miss}

In dijet events: $\alpha_T = p_{T,2} / M_T$

Three Main Backgrounds

- QCD multijet events
 - Instrumental E_T^{miss}: mismeasurement of one of the jets
 - Typically pointing in the **direction** of a jet
- Events with $W \rightarrow Iv$ decays ('lost lepton')
 - Authentic E_T^{miss} from neutrino
 - Out of acceptance, non-isolated, or mis-identified lepton; or hadronic τ
- ✤ Events with Z→vv decays ('invisible Z')
 - Authentic E_T^{miss} from neutrinos
 - Main irreducible background

Highest Cross-Section Background: QCD

- Search variables are 'QCD-killers'
 - Tails mostly QCD-free
- **Further** suppression:
 - ET^{miss} not pointing in direction of a jet

Residual QCD evaluated from control regions

- H_T/H_T^{miss} and M_{T2} : inverting $\Delta \phi(E_T^{miss}, jet)$
- α_T : inverting E_T^{miss}/H_T^{miss}

Francesco Pandolfi

'Lost' Lepton from W Decay

- Main suppression: tighten lepton veto
- Some residual events pass selection:
 - Outside of detector acceptance
 - Non-isolated leptons
 - Reconstruction/ID failures
- Data **control region** with exactly one e/μ
 - Then multiply by probability of 'losing' it

M_{T2} in single-lepton control region (lepton removed)

Hadronic τ Decays with Response Functions

• H_T/H_T^{miss} : special treatment of hadronic τ_h

- Take single- μ events, and smear μp_T by τ_h response function
- Then recompute event kinematics

Comparing the Backgrou

- Compare background estimates to
 - Look for excesses in tails of sea
- * No significant excess over backgro

10

10⁻¹ 10⁻² 10⁻³

CMS Preliminary

2-3i 0h

Pre-fit background

2-3j 1b

2-3i

2h

Data/Est.

Entries

10⁵

10⁴ 10³

10² 10 1 10⁻¹

10-2

Search for SUSY with jets and MET at CMS

[200,300]

200

12.9 fb⁻¹ (13 TeV)

≥7j

≥3b

ost lepto

12.9 fb

_ost lepto

2-6j

>3h

,400]

40

,400]

(13 TeV)

≥7i ¦ 2-6i

2h >3h

[300,400] [400,500] >500 [200,300] [300,400] [300,400] [400,500] >500 >200

H_T [1000, 1500] GeV

4-6i 1b

4-6j 2b

≥7j 0b

4-6j 0b

Limits on Direct Gluino Production

Excluding gluinos up to 1.75 TeV and neutralinos up to 1.2 TeV

Francesco Pandolfi

Search for SUSY with jets and ME_T at CMS

Limits on Direct Squark Production

Excluding squarks (stops) up to 1.4 (0.9) TeV and neutralinos up to 500 GeV

Francesco Pandolfi

Conclusions

- CMS has a vast SUSY-hunting program
- Inclusive searches in jets+ET^{miss} final states
 - Probing **direct** squark and gluino production at the **energy frontier**
- * Showed result from **three** searches: H_T/H_T^{miss} , M_{T2} , α_T
 - Updated to 12.9 fb⁻¹
- No significant excess over background predictions
 - Simplified models: excluding gluino/stop/neutralino up to 1.7/0.9/1.2 TeV
- Will continue searching in the quickly-expanding 13 TeV dataset!