Searches for Supersymmetry with Photons at CMS

Si Xie

California Institute of Technology

on behalf of the CMS Collaboration

38'th International Conference on High Energy Physics 08/04/2016

SUSY searches using photons are highly motivated

- Gauge Mediated SUSY breaking models produce decay chains with large branching ratio to photons
 - LSP is the gravitino
 - NLSP has large branching ratio to photons, Higgs, and Z
- The presence of photons suppresses SM background in a complementary way compared to typical SUSY searches → probes complementary phase space
- Higgs $\rightarrow \gamma \gamma$ decay is a very powerful signature!

Overview

- 1) Strong limits on gluinos, and EWKinos (χ_2^0 , χ_1^{\pm}) excluding deep into the TeV region in many simplified models
- 2) Interesting excursions in the Higgs-aware search to watch out for with more data

- Uses 2.3 fb-1 from the 2015 dataset
- Select events with 2 photons
 - Central (|η| < 1.44)
 - p_T > 40 GeV
 - Pixel track seed veto (suppress electrons)
 - $M_{\gamma\gamma} > 105$ (trigger selection)
- Require baseline MET > 100 GeV
- Perform search in 4 exclusive MET bins:
 - (100,110); (110,120); (120,140); (140, Infinity)

Dominant Background : QCD γγ production (Fake MET)

CMS PAS: QCD Bkg Estimation

Use Data-Driven Method

- Assume MET distribution is the same in Z→ee sample and inverted photon ID/isolation sample
- Use Z→ee control region to predict MET distribution for signal region
- Use inverted photonID/iso sample as cross-check

CMS PAS: QCD Bkg Estimation

Use Data-Driven Method

We do have to correct for difference in hadronic recoil
→ use MC simulation to correct for this

CMS PAS: SUS-15-012

Results

No significant deviation from SM bkg is observed

CMS PAS: SUS-15-012

Results

No significant deviation from SM bkg is observed

Derive limits on gluino-pair production

Exclude gluinos with mass below 1.65 TeV

A complementary search using one photon and MET

Photon + MET Search SUS-16-023

- A complementary search using one photon and MET
 - Photon p_T > 180 GeV
 - MET Significance (S) and M_T are used to define the search region
 - Search performed in bins of $S_T^{\gamma} = MET + \Sigma_{photons} p_T$

Caltech

11

CMS PAS:

- Main Backgrounds:
 - $Z(\rightarrow vv)+\gamma$, $W(\rightarrow Iv)+\gamma$
 - γ+jets
- Estimated using a template fit in the Control Region to the variable $\Delta\phi$ (MET, jet_1)

Fit Result Scale Factor γ +jets = 1.46 ± 0.13 Scale Factor V γ = 0.69 ± 0.17

12

- Systematic Uncertainty dominated by fit uncertainty for V+ $\!\gamma$ normalization
- Bkg prediction is validated in
 - Iow M_T & Iow MET Significance CR
 - lepton+γ CR

- Systematic Uncertainty dominated by fit uncertainty for V+γ normalization
- Bkg prediction is validated in
 - Iow M_T & Iow MET Significance CR
 - lepton+γ CR
 - the region of $S_T^{\gamma} < 600 \text{ GeV}$

CMS PAS: SUS-16-023

Results

Observe no significant deviation to the SM bkg prediction

15

CMS PAS: SUS-16-023

Si Xie

Results

- Observe no significant deviation to the SM bkg prediction
- Derive Limits on gluino-pair production:

 Achieve complementary exclusion compared to Diphoton+MET search 16

CMS PAS: SUS-16-023

Results

- Observe no significant deviation to the SM bkg prediction
- Derive limits on gluino-pair production
- Derive limits for GGM scenario

- Use Higgs → γγ decay as a tag & search inclusively for excesses in razor variables (M_R & R²)
- Sensitive to scenarios with large branching ratios to Higgs

- Use Higgs → γγ decay as a tag & search inclusively for excesses in razor variables (M_R & R²)
- Sensitive to scenarios with large branching ratios to Higgs

- The first result using this unique signature was released for Run1
- Interpreted in terms of EWK SUSY simplified models

 ¹
 ²
 ⁰
 ¹
 [±]
 [→]
 ^W
 ^H
 ^χ
 ¹
 ⁰
 ^χ
 ¹
 [±]
 [→]
 ^W
 ^H
 ^χ
 ¹
 ⁰
 ^χ
 ¹
 [±]
 [→]
 ^W
 ^H
 ^χ
 ¹
 ⁰
 ^χ
 ¹
 [±]
 [→]
 ^W
 ^H
 ^χ
 ¹
 ⁰
 ^χ
 ¹
 ¹

- Use Higgs → γγ decay as a tag & search inclusively for excesses in razor variables (M_R & R²)
- Sensitive to scenarios with large branching ratios to Higgs

 In Run 2, we interpret the search using a sbottom pair production simplified model with sbottom → b H χ₁⁰

- Select events with 2 photons and choose Higgs candidate as the pair that maximizes $(p_{T_1} + p_{T_2})$
- Categorize based on p_T^{γγ}, a 2nd H→bb pair, and Higgs mass resolution

- Select events with 2 photons and choose Higgs candidate as the pair that maximizes $(p_{T_1} + p_{T_2})$
- Categorize based on p_T^{γγ}, a 2nd H→bb pair, and Higgs mass resolution
- Then bin in the razor variables M_R & R²

- Dominant background is non-resonant QCD γγ production
- Signal is extracted via a fit to myy spectrum:
 - Non-resonant bkg : exponential / bernstein polynomial
 - SM Higgs & SUSY signal : shape extracted from MC

- Most significant deviation is 2.5 σ local (1.4 σ global) and occurs in the HighPt category (M_R > 600 & R² > 0.025)
- A very interesting bin to watch with more data this year

- Obtain fairly strong limits on sbottom pair production simplified model decaying to b, Higgs & LSP
- Exclude sbottoms up to masses of 360 GeV

Summary

- Searches for SUSY using photons are pushing the sensitivity frontiers on many fronts:
 - Gluino-pair production in GGM
 - Electroweak production in GGM
 - SUSY scenarios involving large branching ratio to Higgs
- Starting to explore phase space and parameter space that have never been explored before
- Stay tuned for a very exciting near future.

Backups

27

CMS PAS: QCD Bkg Estimation

Use Data-Driven Method

- Systematic uncertainties dominated by the shape difference between the Inverted ID/Iso CR and the Z→ee CR : 12% - 150%
- Other systematics due to:
 - Recoil correction statistical uncertainties : 15-39%
 - Recoil dependence on jet multiplicity : 15-34%

CMS PAS: SUS-15-012 Diphoton + MET Search

Two Main Backgrounds :

- 1) QCD yy production (Fake MET)
- 2) Wy production (electron fakes γ)

CMS PAS: SUS-15-012 W+γ Bkg Estimation

Use Data-Driven Method

- Measure electron → γ misID rate using tag and probe method on Z→ee control sample : f_{e→y} = 0.021
- Select electron+ γ control region & scale the sample by $f_{e \rightarrow \gamma/}(1 f_{e \rightarrow \gamma})$ to predict the W γ bkg in the signal region
- Systematic uncertainty (from misID rate measurement) is 19%