

Searches for TeV-scale resonances in di-boson final states with ATLAS at 13TeV

Nikos Konstantinidis (UCL) for the ATLAS Collaboration

Introduction

- Many BSM physics models predict TeV-scale resonances decaying with large branching fractions to two EW bosons
- This talk: ATLAS preliminary results with 10-15fb⁻¹ of 13TeV data on
 - $X \rightarrow HH \rightarrow bbbb$
 - $-X \rightarrow VH \rightarrow qqbb$
 - $-X \rightarrow VV \rightarrow qqqq$, lvqq, llqq, vvqq
- Related ATLAS talks at ICHEP
 - $X \rightarrow \gamma \gamma$ (by B.Lenzi)
 - X→Z γ (by G.Marchiori)
 - Other HH channels (by T.Varol)
 - Leptonic VV channels (by K. Köneke)
- Related ATLAS posters at ICHEP
 - HH→ bbbb (J.Alison)
 - HH → ττbb (P.Saha)

Benchmark signal models used:

spin-0: heavy H in extended Higgs sector

spin-1: W'/Z' in Heavy Vector Triplet models

spin-2: Randall-Sundrum KK Graviton

Reconstructing W/Z/H → qq

- EW bosons have masses O(~100GeV)
- Searches for resonances with m_x in the range few hundred GeV to a few TeV
 - Wide range of boson p_T 's leading to distinct topologies for their hadronic decays:

Resolved: reconstruct as 2 anti-k_t R=0.4 (akt4) jets for boson p_T up to a few hundred GeV **Boosted**: reconstruct as a single ant-k_t jet R=1.0 (akt10) jet (large-R jet) for higher boson p_T (Notation: "j" for akt4 jets, "J" for akt10 jets)

Boosted jets: Increasing transverse momentum

Large-R jet techniques

- **Grooming:** to minimize impact of energy deposits from pile-up interactions
 - ATLAS mainly uses "Trimming" (arXiv:0912.1342): re-cluster with k_t R=0.2 and remove sub-jets with

$$p_{\mathrm{T}}^{\mathrm{subjet}}/p_{\mathrm{T}}^{\mathrm{jet}} < 0.05$$

- W/Z boson tagging: ATL-PHYS-PUB-2015-033
 - m_J consistent with m_W/m_Z within ± 15 GeV
 - W and Z windows overlap
 - Sub-structure consistent with two-prong decay
 - Most popular variable: $D_2^{(\beta=1)}$ (arXiv: 1409.6298, 1507.03018)
 - Typical WP: ε =50%, QCD rejection factor ~50
- Higgs boson (b-) tagging: ATL-CONF-2016-039
 - Match to anti-k_t R=0.2, b-tagged track-jets

HH → bbbb

- BR(H \rightarrow bb)= \sim 57% => BR(HH \rightarrow bbbb)= \sim 33%
 - Most sensitive HH final state across almost entire search space
- Resolved analysis: 4 b-tagged akt4 jets with p_T>30GeV, forming two Higgs candidates
 - Improved low m_X sensitivity, by relaxing kinematic cuts and dealing with backgrounds & combinatorics
- Boosted analysis: 2 trimmed akt10 jets: $p_T>450/250$ GeV, masses consistent with m_H and b-tagged sub-jets
 - Addressed acceptance loss at very high m_X by introducing three signal categories (2/3/4-b-tag), based on number of b-tagged track jets within large-R jets
- Dominant bkg is QCD multijets, ~10% ttbar
 - Data-driven QCD bkg estimate by relaxing the number of b-tagged jets (or track jets)
 - Discriminant is di-Higgs invariant mass in signal region (SR)

HH → bbbb results

Resolved analysis also sets world's best limit on non-resonant HH production:

$$\sigma(pp \to hh \to b\bar{b}b\bar{b}) < 330 \text{ fb}$$
 (~30x the SM cross section)

Searches for di-boson resonances at 13TeV with ATLAS

VH→ qqbb

- Complements VH→ llbb/lvbb/vvbb (2015 result just published, updates coming soon)
- Benefits from high branching fraction of W(Z) \rightarrow qq: 67%(70%)
 - qqbb competitive at high m_X, where multi-jet bkg diminishes
- Topology: 2 trimmed akt10 jets with p_T>450/200GeV
 - V candidate: standard boson tagging (50% working point)
 - H candidate: 75<m_{HC}<145GeV, b-tagged small radius track jets
- Data-driven multijet bkg estimation from 0-b-tag sample
 - Normalization from 0-tag to 1-tag and 2-tag sample in high mass sideband of Higgs candidate
 - Tested in validation region (low mass V candidate sideband)

VH→ qqbb results

No excess observed in data over the predicted background

Sensitivity to $\sigma \times BR$ down to a few fb for m_X above 2 TeV

Nikos Konstantinidis

Searches for di-boson resonances at 13TeV with ATLAS

X→VV→ Ilqq, vvqq, Ivqq, qqqq

- Ilqq, vvqq, lvqq normally go down to few hundred GeV, hence include both resolved and boosted $V \rightarrow qq$ reconstruction
 - In current preliminary results only llqq does
- VV \rightarrow qqqq: only looks for resonances with m_X>~1TeV, hence uses only large-R jets and standard boson tagging for both V's
- All channels have comparable sensitivity across all resonance masses
 - llqq has better sensitiviy below ~1TeV and worse above ~2TeV

- Slight excess @~2TeV in Run-1 result...
- Run-2 analysis has similar kinematic selection but uses trimmed akt10 jets
 - Two jets: $p_T > 450/200 \text{GeV}$
 - Standard boson tagging $(D_2^{\beta=1})$
 - Number of tracks in a jet < 30
 - ~30% improvement in sensitivity
- Multijet bkg dominant (others negligible)
 - Data-driven estimate, modeled with

$$\frac{dn}{dx} = p_1(1-x)^{p_2 + \xi p_3} x^{p_3} \qquad x = m_{JJ} / \sqrt{s}$$

- Tested in several control regions in data, e.g.
 - Both jets in boson mass sidebands (low, high, mixed)
 - Only one of the two jets satisfies boson-tagging cuts

X→VV→ qqqq results

Nikos Konstantinidis

Searches for di-boson resonances at 13TeV with ATLAS

- Standard $Z \rightarrow 11$ selection
- V \rightarrow qq: large-R jet with pT>200GeV; if not, try resolved reconstruction
 - Merged class: high/low purity regions (pass/fail $D_2^{(\beta=1)}$ cut) $^{0.1}$
 - Resolved class: b-tagging in ZZ search (for $Z \rightarrow bb$)
 - Also classification as ggF or VBF
- Dominant bkg Z+jets, followed by top, di-bosons
 - Control regions defined in data and used in overall fit to derive normalization factors
 - Z control region in V candidate mass sidebands
 - Top control region: events with opposite flavour leptons

- Large missing $E_T > 250 \text{GeV}$ for $Z \rightarrow vv$
- V→qq with standard boson-tagging
 - large-R jet with p_T>200GeV
- Define high/low purity (HP/LP) signal categories
 - HP: full boson-tagging
 - LP: $D_2^{(\beta=1)}$ variable cut inverted
- Dominant bkgs: Z+jets, W+jets and top
 - Estimated with MC, tested in data control regions
 - 2-lepton CR for Z+jets,
 - 1-lepton/no b-tag for W+jets
 - 1-lepton + b-tag for top
 - Signal & Control regions used in combined fit
- Analysis discriminant: transverse mass

$$m_T^2 = (E_{T,J} + E_T^{\text{miss}})^2 - (\vec{p}_{T,J} + \vec{E}_T^{\text{miss}})^2$$

X→ZV→ llqq/vvqq combined results

No excess observed in data over the predicted background

Sensitivity to $\sigma \times BR$ down to a few fb for m_X above 2 TeV

Nikos Konstantinidis

Searches for di-boson resonances at 13TeV with ATLAS

- W \rightarrow lv: $E_T^{mis}>100$ GeV, $p_T(lv)>200$ GeV
- V→qq with large-R jet boson-tagging
 - large-R jet with pT>200GeV
 - High/low purity regions (pass/fail $D_2^{(\beta=1)}$ cut)
- Dominant bkgs: W+jets and ttbar
 - Estimated using control regions in data, which are included in the combined fit
 - W+jets CR: m_J sidebands
 - Top CR: at least one b-tagged akt4 jet
- Discriminant: transverse mass m_{lvJ}

m_{lvJ} [GeV]

- W \rightarrow lv: $E_T^{mis}>100$ GeV, $p_T(lv)>200$ GeV
- V→qq with large-R jet boson-tagging
 - large-R jet with pT>200GeV
 - High/low purity regions (pass/fail $D_2^{(\beta=1)}$ cut)
- Dominant bkgs: W+jets and ttbar
 - Estimated using control regions in data, which are gincluded in the combined fit
 - W+jets CR: m_J sidebands
 - Top CR: at least one b-tagged akt4 jet
- Discriminant: transverse mass m_{lvJ}

No excess observed in data over predicted background...

W'→WZ summary plot

Searches for di-boson resonances at 13TeV with ATLAS

- 13-13 not so lucky for ATLAS!
 - No significant bumps found in searches for di-boson resonances with ~13fb⁻¹ at 13TeV

- However: di-boson resonance searches remain sensitive probes of the energy frontier!
 - The fantastic performance of the LHC promises a very exciting journey ahead!

Back-up

$X \rightarrow VH \rightarrow Iv/II/vv bb$

• Just published result with 2015 data (3.2fb⁻¹)

